9 resultados para value networks

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This paper aims to improve understanding of how to manage global network operations from an engineering perspective. Design/methodology/approach: This research adopted a theory building approach based on case studies. Grounded in the existing literature, the theoretical framework was refined and enriched through nine in-depth case studies in the industry sectors of aerospace, automotives, defence and electrics and electronics. Findings: This paper demonstrates the main value creation mechanisms of global network operations along the engineering value chain. Typical organisational features to support the value creation mechanisms are captured, and the key issues in engineering network design and operations are presented with an overall framework. Practical implications: Evidenced by a series of pilot applications, outputs of this research can help companies to improve the performance of their current engineering networks and design new engineering networks to better support their global businesses and customers in a systematic way. Originality/value: Issues about the design and operations of global engineering networks (GEN) are poorly understood in the existing literature in contrast to their apparent importance in value creation and realisation. To address this knowledge gap, this paper introduces the concept of engineering value chain to highlight the potential of a value chain approach to the exploration of engineering activities in a complex business context. At the same time, it develops an overall framework for managing GEN along the engineering value chain. This improves our understanding of engineering in industrial value chains and extends the theoretical understanding of GEN through integrating the engineering network theories and the value chain concepts. © Emerald Group Publishing Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N in and N out, the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N out, with the higher value of N out providing a stronger material. We also find that, if N in is smaller than N out, the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials. © 2011 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strategic innovation has been shown to provide significant value for organisations whilst at the same time challenging traditional ways of thinking and working. There is less known, however, as to how organisations collaborate in innovation networks to achieve strategic innovation. In this paper we explore how innovation networks are orchestrated in developing a strategic innovation initiative around the Internet of Things. We show how a hub actor brings together a diverse group of actors to initially create and subsequently orchestrate the strategic innovation network through the employ of three dialogical strategies, namely persuasive projection, reflective development, and definitional control. Further, we illuminate how different types of legitimacy are established through these various dialogical strategies in orchestrating strategic innovation networks.