14 resultados para university case study
em Cambridge University Engineering Department Publications Database
An investigation into the information exchange between a consultant and client company: a case study
Resumo:
This report deals with collaborations of engineering consultants and clients in the automobile industry.
In these relationships three main challenges have been identified which have to be addressed by the consultancies. Therefore, the research takes the viewpoint of the consulting side. The challenges are
(i) the appropriate project goal definition;
(ii) achieving client satisfaction; and
(iii) dealing with international clients.
An investigation of such a relationship carried out on a case study shows that improvements can be achieved through communication support. The ways to do that are proposed.
Resumo:
Space heating accounts for a large portion of the world's carbon dioxide emissions. Ground Source Heat Pumps (GSHPs) are a technology which can reduce carbon emissions from heating and cooling. GSHP system performance is however highly sensitive to deviation from design values of the actual annual energy extraction/rejection rates from/to the ground. In order to prevent failure and/or performance deterioration of GSHP systems it is possible to incorporate a safety factor in the design of the GSHP by over-sizing the ground heat exchanger (GHE). A methodology to evaluate the financial risk involved in over-sizing the GHE is proposed is this paper. A probability based approach is used to evaluate the economic feasibility of a hypothetical full-size GSHP system as compared to four alternative Heating Ventilation and Air Conditioning (HVAC) system configurations. The model of the GSHP system is developed in the TRNSYS energy simulation platform and calibrated with data from an actual hybrid GSHP system installed in the Department of Earth Science, University of Oxford, UK. Results of the analysis show that potential savings from a full-size GSHP system largely depend on projected HVAC system efficiencies and gas and electricity prices. Results of the risk analysis also suggest that a full-size GSHP with auxiliary back up is potentially the most economical system configuration. © 2012 Elsevier Ltd.
Resumo:
Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.