35 resultados para tree-dimensional analytical solution

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical solution is presented for the vertical consolidation of a cylindrical annulus of clay with horizontal drainage occurring to concentric internal and external drainage boundaries. Numerical results are given for various ratios of internal and external radii and it is shown that solutions for conventional one-dimensional consolidation, and for consolidation of a cylindrical block of clay with drainage only to the outer cylindrical boundary form extremes to the analysis presented here. An application of the solution to the estimation of horizontal permeability of clay is briefly described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional analytical model is developed for the steady state, axisymmetric, slender flow of saturated powder in a rotating perforated cone. Both the powder and the fluid spin with the cone with negligible slip in the hoop direction. They migrate up the wall of the cone along a generator under centrifugal force, which also forces the fluid out of the cone through the powder layer and the porous wall. The flow thus evolves from an over-saturated paste at inlet into a nearly dry powder at outlet. The powder is treated as a Mohr-Coulomb granular solid of constant void fraction and permeability. The shear traction at the wall is assumed to be velocity and pressure dependent. The fluid is treated as Newtonian viscous. The model provides the position of the colour line (the transition from over- to under-saturation) and the flow velocity and thickness profiles over the cone. Surface tension effects are assumed negligible compared to the centrifugal acceleration. Two alternative conditions are considered for the flow structure at inlet: fully settled powder at inlet, and progressive settling of an initially homogeneous slurry. The position of the colour line is found to be similar for these two cases over a wide range of operating conditions. Dominant dimensionless groups are identified which control the position of the colour line in a continuous conical centrifuge. Experimental observations of centrifuges used in the sugar industry provide preliminary validation of the model. © 2011 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-T c superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamical behaviour of the sidewall has an important influence on tyre vibration characteristics. Nonetheless, it remains crudely represented in many existing models. The current work considers a geometrically accurate, two-dimensional, sidewall description, with a view to identifying potential shortcomings in the approximate formulations and identifying the physical characteristics that must be accounted for. First, the mean stress state under pressurisation and centrifugal loading is investigated. Finite-Element calculations show that, while the loaded sidewall shape remains close to a toroid, its in-plane tensions differ appreciably from the associated analytical solution. This is largely due to the inability of the anisotropic sidewall material to sustain significant azimuthal stress. An approximate analysis, based on the meridional tension alone, is therefore developed, and shown to yield accurate predictions. In conjunction with a set of formulae for the 'engineering constants' of the sidewall material, the approximate solutions provide a straightforward and efficient means of determining the base state for the vibration analysis. The latter is implemented via a 'waveguide' discretisation of a variational formulation. Its results show that, while the full geometrical description is necessary for a complete and reliable characterisation of the sidewall's vibrational properties, a one-dimensional approximation will often be satisfactory in practice. Meridional thickness variations only become important at higher frequencies (above 500 Hz for the example considered here), and rotational inertia effects appear to be minor at practical vehicle speeds. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a new formulation of the material point method (MPM) for solving coupled hydromechanical problems of fluid-saturated soil subjected to large deformation. A soil-pore fluid coupled MPM algorithm based on Biot's mixture theory is proposed for solving hydromechanical interaction problems that include changes in water table location with time. The accuracy of the proposed method is examined by comparing the results of the simulation of a one-dimensional consolidation test with the corresponding analytical solution. A sensitivity analysis of the MPM parameters used in the proposed method is carried out for examining the effect of the number of particles per mesh and mesh size on solution accuracy. For demonstrating the capability of the proposed method, a physical model experiment of a large-scale levee failure by seepage is simulated. The behavior of the levee model with time-dependent changes in water table matches well to the experimental observations. The mechanisms of seepage-induced failure are discussed by examining the pore-water pressures, as well as the effective stresses computed from the simulations © 2013 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design work involves uncertainty that arises from, and influences, the progressive development of solutions. This paper analyses the influences of evolving uncertainty levels on the design process. We focus on uncertainties associated with choosing the values of design parameters, and do not consider in detail the issues that arise when parameters must first be identified. Aspects of uncertainty and its evolution are discussed, and a new task-based model is introduced to describe process behaviour in terms of changing uncertainty levels. The model is applied to study two process configuration problems based on aircraft wing design: one using an analytical solution and one using Monte-Carlo simulation. The applications show that modelling uncertainty levels during design can help assess management policies, such as how many concepts should be considered during design and to what level of accuracy. © 2011 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A permanent-magnet motor has been designed for an innovative axial-flow ventricular assist device (VAD), to be placed in the descending aorta, intended to offload the left ventricle and augment renal perfusion in patients with congestive heart failure (CHF). For this application, an intra-aortic impeller with a built-in permanent magnet rotor is driven by an extraaortic stator working in synchronism with the natural heart. To meet this need, a two-dimensional analytical model has been developed in the MATLAB environment to estimate machine parameters; finite element analysis (FEA) has been used to refine the results. A prototype blood pump equipped with an innovative motor designed from the procedure above has been tested in a mock loop representing the human circulatory system. The performance of VAD incorporating the motor is presented. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of multiple scattering on acoustic manipulation of spherical particles using helicoidal Bessel-beams are discussed. A closed-form analytical solution is developed to calculate the acoustic radiation force resulting from a Bessel-beam on an acoustically reflective sphere, in the presence of an adjacent spherical particle, immersed in an unbounded fluid medium. The solution is based on the standard Fourier decomposition method and the effect of multi-scattering is taken into account using the addition theorem for spherical coordinates. Of particular interest here is the investigation of the effects of multiple scattering on the emergence of negative axial forces. To investigate the effects, the radiation force applied on the target particle resulting from a helicoidal Bessel-beam of different azimuthal indexes (m = 1 to 4), at different conical angles, is computed. Results are presented for soft and rigid spheres of various sizes, separated by a finite distance. Results have shown that the emergence of negative force regions is very sensitive to the level of cross-scattering between the particles. It has also been shown that in multiple scattering media, the negative axial force may occur at much smaller conical angles than previously reported for single particles, and that acoustic manipulation of soft spheres in such media may also become possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbine design engineers have to ensure that film cooling can provide sufficient protection to turbine blades from the hot mainstream gas, while keeping the losses low. Film cooling hole design parameters include inclination angle (α), compound angle (β ), hole inlet geometry and hole exit geometry. The influence of these parameters on aerodynamic loss and net heat flux reduction is investigated, with loss being the primary focus. Low-speed flat plate experiments have been conducted at momentum flux ratios of IR = 0.16, 0.64 and 1.44. The film cooling aerodynamic mixing loss, generated by the mixing of mainstream and coolant, can be quantified using a three-dimensional analytical model that has been previously reported by the authors. The model suggests that for the same flow conditions, the aerodynamic mixing loss is the same for holes with different α and β but with the same angle between the mainstream and coolant flow directions (angle κ). This relationship is assessed through experiments by testing two sets of cylindrical holes with different α and β : one set with κ = 35°, another set with κ = 60°. The data confirm the stated relationship between α, β, κ and the aerodynamic mixing loss. The results show that the designer should minimise κ to obtain the lowest loss, but maximise β to achieve the best heat transfer performance. A suggestion on improving the loss model is also given. Five different hole geometries (α =35.0°, β =0°) were also tested: cylindrical hole, trenched hole, fan-shaped hole, D-Fan and SD-Fan. The D-Fan and the SD-Fan have similar hole exits to the fan-shaped hole but their hole inlets are laterally expanded. The external mixing loss and the loss generated inside the hole are compared. It was found that the D-Fan and the SD-Fan have the lowest loss. This is attributed to their laterally expanded hole inlets, which lead to significant reduction in the loss generated inside the holes. As a result, the loss of these geometries is ≈ 50 % of the loss of the fan-shaped hole at IR = 0.64 and 1.44. Copyright © 2011 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new formulation for trailing edge noise radiation from rotating blades based on an analytical solution of the convective wave equation. It accounts for distributed loading and the effect of mean flow and spanwise wavenumber. A commonly used theory due to Schlinker and Amiet (1981) predicts trailing edge noise radiation from rotating blades. However, different versions of the theory exist; it is not known which version is the correct one and what the range of validity of the theory is. This paper addresses both questions by deriving Schlinker and Amiet's theory in a simple way and by comparing it to the new formulation, using model blade elements representative of a wind turbine, a cooling fan and an aircraft propeller. The correct form of Schlinker and Amiet's theory (1981) is identified. It is valid at high enough frequency, i.e. for a Helmholtz number relative to chord greater than one and a rotational frequency much smaller than the angular frequency of the noise sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations of a tethered meteorological balloon show that a strong vibration coupling exists between axial forcing of the tether and ovalling deformations of the balloon. Such coupling may lead to system instabilities and fatigue failure in a tethered-balloon system. This is particularly relevant in the case of a balloon launched from a moving vessel, as is proposed as part of the SPICE geoengineering project. This paper investigates the vibration characteristics of a tethered, spherical balloon using a simple analytical model: a tensioned, spherical membrane attached to a spring. The analytical solution for the natural frequencies and modeshapes of this system is compared to transfer functions obtained by laser vibrometry. These results are then used to determine the most suitable method of modelling the dynamic response of a tethered balloon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High temperature superconducting (HTS) synchronous motors can offer significant weight and size reductions, as well as improved efficiency, over conventional copper-wound machines due to the higher current density of high temperature superconducting (HTS) materials. In order to optimise the design parameters and performance of such a machine, this paper proposes a basic physical model of an air-cored HTS synchronous motor with a copper armature winding and HTS field winding. An analytical method for the field analysis in the synchronous motor is then presented, followed by a numerical finite element analysis (FEA) model to verify the analytical solution. The model is utilised to study the influence of the geometry of the HTS coils on the magnetic field at the armature winding, and geometrical parameter optimisation is carried out using this theoretical model to obtain a more sinusoidal magnetic field at the armature, which has a major influence on the performance of the motor.