15 resultados para traduzione, traduzione teatrale, larry kramer, the normal heart, aids, inglese, lgbtq, teatro
em Cambridge University Engineering Department Publications Database
Resumo:
Atlases and statistical models play important roles in the personalization and simulation of cardiac physiology. For the study of the heart, however, the construction of comprehensive atlases and spatio-temporal models is faced with a number of challenges, in particular the need to handle large and highly variable image datasets, the multi-region nature of the heart, and the presence of complex as well as small cardiovascular structures. In this paper, we present a detailed atlas and spatio-temporal statistical model of the human heart based on a large population of 3D+time multi-slice computed tomography sequences, and the framework for its construction. It uses spatial normalization based on nonrigid image registration to synthesize a population mean image and establish the spatial relationships between the mean and the subjects in the population. Temporal image registration is then applied to resolve each subject-specific cardiac motion and the resulting transformations are used to warp a surface mesh representation of the atlas to fit the images of the remaining cardiac phases in each subject. Subsequently, we demonstrate the construction of a spatio-temporal statistical model of shape such that the inter-subject and dynamic sources of variation are suitably separated. The framework is applied to a 3D+time data set of 138 subjects. The data is drawn from a variety of pathologies, which benefits its generalization to new subjects and physiological studies. The obtained level of detail and the extendability of the atlas present an advantage over most cardiac models published previously. © 1982-2012 IEEE.
Resumo:
Previous investigations have unveiled size effects in the strength of metallic foams under simple shear - the shear strength increases with diminishing specimen size, a phenomena similar to that shown by Fleck et al. (Acta Mat., 1994, Vol. 42, p. 475.) on the torsion tests of copper wires of various radii. In this study, experimental study of the constrained deformation of a foam layer sandwiched between two steel plates has been conducted. The sandwiched plates are subjected to combined shear and normal loading. It is found that measured yield loci of metallic foams in the normal and shear stress space corresponding to various foam layer thicknesses are self-similar in shape but their size increases as the foam layer thickness decreases. Moreover, the strains profiles across the foam layer thickness are parabolic instead of uniform; their values increase from the interfaces between the foam layer and the steel plates and reach their maximum in the middle of the foam layer, yielding boundary layers adjacent to the steel plates. In order to further explore the origin of observed size effects, micromechanics models have been developed, with the foam layer represented by regular and irregular honeycombs. Though the regular honeycomb model is seen to underestimate the size effects, the irregular honeycomb model faithfully captures the observed features of the constrained deformation of metallic foams.
Resumo:
Micro-scale abrasion (ball cratering) tests were performed with different combinations of ball and bulk specimen materials, under different test conditions, such as load and abrasive slurry concentration. Wear modes were classified into two types: with rolling particle motion and with grooving particle motion. Wear rates observed with rolling particle motion were relatively insensitive to test conditions, whereas with grooving motion they varied much more. It is suggested that rolling abrasion is therefore a more appropriate mode if reproducible test results are desired. The motion of the abrasive particles can be reliably predicted from the knowledge of hardnesses and elastic properties of the ball and the specimen, and from the normal load and the abrasive slurry concentration. General trends in wear resistance measured in the micro-scale abrasion test with rolling particle motion are similar to those reported in tests with fixed abrasives with sliding particle motion, although the variation in wear resistance with hardness is significantly smaller. © 2004 Published by Elsevier B.V.
Resumo:
New types of vortex generators for boundary layer control were investigated experimentally in a flow field which contains a Mach 1.4 normal Shockwave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken with two novel devices: ramped-vanes and split-ramps. Flowfield diagnostics included high-speed Schlieren, oil flow visualization, and pitot-static pressure measurements. A number of flowfield parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline. All configurations tested yielded an elimination of centerline flow separation with the presence of the vortex generators. However, the devices also tended to increase the three-dimensionality of the flow with increased side-wall interaction. When located 25δo upstream of the normal shock, the largest ramped-vane device (whose height was about 0.75 the incoming uncontrolled boundary layer thickness, δo) yielded the smallest centerline incompressible shape factor and the least streamwise oscillations of the normal shock. However, additional studies are needed to better understand the corner interaction effects, which are substantial. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Any linearised theory of the initiation of friction-excited vibration via instability of the state of steady sliding requires information about the dynamic friction force in the form of a frequency response function for sliding friction. Recent measurements of this function for an interface consisting of a nylon pin against a glass disc are used to probe the underlying constitutive law. Results are compared to linearised predictions from the simplest ratestate model of friction, and a ratetemperature model. In both cases the observed variation with frequency is not compatible with the model predictions, although there are some significant points of similarity. The most striking result relates to variation of the normal load: any theory embodying the Coulomb relation F∝N would predict behaviour entirely at variance with the measurements, even though the steady friction force obtained during the same measurements does follow the Coulomb law. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures. © 2012 American Physical Society.
Resumo:
We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures.
Resumo:
A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB 2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB 2 for future superconducting fault current limiter (SFCL) applications. © IOP Publishing Ltd.
Resumo:
The normal shock wave / boundary layer interaction (normal SBLI) is important to the operation and performance of a supersonic inlet, and the normal SBLI is particularly prominent in external compression inlets. To improve our understanding of such interactions, it is helpful to make use of fundamental flows which capture the main elements of inlets, without resorting to the level of complexity and system integration associated with full-geometry inlets. In this paper, several fundamental fiow-fleld configurations have been considered as possible test cases to represent the normal SBLI aspects found in typical external compression inlets, and it was found that the spillage-diffuser more closely retains the basic flow features of an external compression inlet than the other configurations. In particular, this flow-fleld allows the normal shock Mach number as well as the amount and rate of subsonic diffusion to be all held approximately constant mid independent of the application of flow control. In addition, a survey of several external compression inlets was conducted to quantify the flow and geometric parameters of the spillage-diffuser relevant to actual inlets. The results indicated that such a flow may be especially relevant if the terminal Mach number is about 1.3 to 1.4, the confinement parameter is around 10%, the width around twice or three times the height, and with the area expansion just downstream of the shock on the conservative side of the stall limit for incompressible diffusers. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Canonical normal shock wave/boundary-layer interaction flows relevant to external compression inlets
Resumo:
The normal shock wave/boundary-layer interaction is important to the operation and performance of a supersonic inlet, and the normal shock wave/boundary-layer interaction is particularly prominent in external compression inlets. To improve understanding of such interactions, it is helpful to make use of fundamental flows that capture the main elements of inlets, without resorting to the level of complexity and system integration associated with full-geometry inlets. In this paper, several fundamental flowfield configurations have been considered as possible test cases to represent the normal shock wave/boundary-layer interaction aspects found in typical external compression inlets, and it was found that the spillage diffuser more closely retains the basic flow features of an external compression inlet than the other configurations. In particular, this flowfield allows the normal shock Mach number as well as the amount and rate of subsonic diffusion to all be held approximately constant and independent of the application of flow control. In addition, a survey of several external compression inlets was conducted to quantify the flow and geometric parameters of the spillage diffuser relevant to actual inlets. The results indicated that such a flow may be especially relevant if the terminal Mach number is about 1.3 to 1.4, the confinement parameter is around 10%, and the width is around twice or three times the height. In addition, the area expansion downstream of the shock should be limited to the conservative side of incipient stall based on incompressible diffusers. Copyright © 2013 by the authors.
Resumo:
AIMS: Our aim was to determine whether alterations in biomechanical properties of human diseased compared to normal coronary artery contribute to changes in artery responsiveness to endothelin-1 in atherosclerosis. MAIN METHODS: Concentration-response curves were constructed to endothelin-1 in normal and diseased coronary artery. The passive mechanical properties of arteries were determined using tensile ring tests from which finite element models of passive mechanical properties of both groups were created. Finite element modelling of artery endothelin-1 responses was then performed. KEY FINDINGS: Maximum responses to endothelin-1 were significantly attenuated in diseased (27±3 mN, n=55) compared to normal (38±2 mN, n=68) artery, although this remained over 70% of control. There was no difference in potency (pD2 control=8.03±0.06; pD2 diseased=7.98±0.06). Finite element modelling of tensile ring tests resulted in hyperelastic shear modulus μ=2004±410 Pa and hardening exponent α=22.8±2.2 for normal wall and μ=2464±1075 Pa and α=38.3±6.7 for plaque tissue and distensibility of diseased vessels was decreased. Finite element modelling of active properties of both groups resulted in higher muscle contractile strain (represented by thermal reactivity) of the atherosclerotic artery model than the normal artery model. The models suggest that a change in muscle response to endothelin-1 occurs in atherosclerotic artery to increase its distensibility towards that seen in normal artery. SIGNIFICANCE: Our data suggest that an adaptation occurs in medial smooth muscle of atherosclerotic coronary artery to maintain distensibility of the vessel wall in the presence of endothelin-1. This may contribute to the vasospastic effect of locally increased endothelin-1 production that is reported in this condition.
Resumo:
This paper looks at active control of the normal shock wave/turbulent boundary layer interaction (SBLI) using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and control the rate of mass transfer. © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.