6 resultados para tooth attrition
em Cambridge University Engineering Department Publications Database
Resumo:
The attrition of two potential oxygen-carriers for chemical-looping, 100. wt% mechanically-mixed, unsupported iron oxide (400-600 μm diameter) and 25. wt% copper oxide impregnated on alumina (600-900 μm diameter), has been studied. The rates of attrition of batches of these particles whilst they were being fluidised and subjected to successive cycles of reduction and oxidation were determined by measuring the rate of production of fine particles elutriated from the bed, as well as progressive changes in the distribution of particle sizes retained in the bed. The ability of the particles to withstand impacts was also investigated by examining the degree of fragmentation of 1. g of reacted particles of known size on projecting them at a target at various velocities. It was found that the mechanical strength of the iron oxide particles deteriorated significantly after repeated cycles of oxidation and reduction. Thus, the rate of elutriation increased ~35-fold between the 1st and 10th cycle. At an impact velocity of 38. m/s, the amount of fragmentation in the impact test, viz. mass fraction of particles after impact having a size less than that before impact, increased from ~2.3. wt% (fresh particles) to 98. wt% after the 10th cycle. The CuO particles, in comparison, were able to withstand repeated reaction: no signs of increased rates of elutriation or fragmentation were observed over ten cycles. These results highlight the importance of selecting a durable support for oxygen-carriers. © 2011 Elsevier Ltd.
Resumo:
This paper proposes an analytical approach that is generalized for the design of various types of electric machines based on a physical magnetic circuit model. Conventional approaches have been used to predict the behavior of electric machines but have limitations in accurate flux saturation analysis and hence machine dimensioning at the initial design stage. In particular, magnetic saturation is generally ignored or compensated by correction factors in simplified models since it is difficult to determine the flux in each stator tooth for machines with any slot-pole combinations. In this paper, the flux produced by stator winding currents can be calculated accurately and rapidly for each stator tooth using the developed model, taking saturation into account. This aids machine dimensioning without the need for a computationally expensive finite element analysis (FEA). A 48-slot machine operated in induction and doubly-fed modes is used to demonstrate the proposed model. FEA is employed for verification.
Resumo:
Humans perform fascinating science experiments at home on a daily basis when they undertake the modification of natural and naturally-derived materials by a cooking process prior to consumption. The material properties of such foods are of interest to food scientists (texture is often fundamental to food acceptability), oral biologists (foods modulate feeding behavior), anthropologists (cooking is probably as old as the genus Homo and distinguishes us from all other creatures) and dentists (foods interact with tooth and tooth replacement materials). Materials scientists may be interested in the drastic changes in food properties observed over relatively short cooking times. In the current study, the mechanical properties of one of the most common (and oldest at 4,000+ years) foods on earth, the noodle, were examined as a function of cooking time. Two types of noodles were studied, each made from natural materials (wheat flour, salt, alkali and water) by kneading dough and passing them through a pasta-making machine. These were boiled for between 2-14 min and tested at regular intervals from raw to an overcooked state. Cyclic tensile tests at small strain levels were used to examine energy dissipation characteristics. Energy dissipation was >50% per cycle in uncooked noodles, but decreased by an order of magnitude with cooking. Fractional dissipation values remained approximately constant at cooking times greater than 7 min. Overall, a greater effect of cooking was on viscoplastic dissipation characteristics rather than on fracture resistance. The results of the current study plot the evolution of a viscoplastic mixture into an essentially elastic material in the space of 7 minutes and have broad implications for understanding what cooking does to food materials. In particular, they suggest that textural assessment by consumers of the optimally cooked state of food has a definite physical definition. © 2007 Materials Research Society.
Resumo:
Hybrid numerical large eddy simulation (NLES) and detached eddy simulation (DES) methods are assessed on a labyrinth seal geometry. A high sixth order discretization scheme is used and is validated using a test case of a two dimensional vortex. The hybrid approach adopts a new blending function and along with DES is initially validated using a simple cavity flow. The NLES method is also validated outside of RANS zones. It is found that there is very little resolved turbulence in the cavity for the DES simulation. For the labyrinth seal calculations the DES approach is problematic giving virtually no resolved turbulence content. It is seen that over the tooth tips the extent of the LES region is small and is likely to be a strong contributor to excessive flow damping in these regions. On the other hand the zonal Hamilton-Jacobi approach did not suffer from this trait. In both cases the meshes used are considered to be hybrid RANS-LES adequate. Fortunately (or perhaps unfortunately) the DES profiles are in agreement with the time mean experimental measurements. It is concluded that for an inexperienced CFD practitioner this could have wider implications particularly if transient results such as unsteady loading are desired. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.