8 resultados para through pores formation
em Cambridge University Engineering Department Publications Database
Resumo:
We compare the performance of a typical hole transport layer for organic photovoltaics (OPVs), Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin film with a series of PEDOT:PSS layers doped with silver (Ag) nanoparticles (NPs) of various size distributions. These hybrid layers have attracted great attention as buffer layers in plasmonic OPVs, although there is no report up to date on their isolated performance. In the present study we prepared a series of PEDOT:PSS layers sandwiched between indium tin oxide (ITO) and gold (Au) electrodes. Ag NPs were deposited on top of the ITO by electron beam evaporation followed by spin coating of PEDOT:PSS. Electrical characterization performed in the dark showed linear resistive behavior for all the samples; lower resistance was observed for the hybrid ones. It was found that the resistivity of the samples decreases with increasing the particle's size. A substantial increase of the electric field between the ITO and the Au electrodes was seen through the formation of current paths through the Ag NPs. A striking observation is the slight increase in the slope of the current density versus voltage curves when measured under illumination for the case of the plasmonic layers, indicating that changes in the electric field in the vicinity of the NP due to plasmonic excitation is a non-vanishing factor. © 2014 Published by Elsevier B.V. All rights reserved.
Resumo:
The self-assembly of proteins and peptides into polymeric amyloid fibrils is a process that has important implications ranging from the understanding of protein misfolding disorders to the discovery of novel nanobiomaterials. In this study, we probe the stability of fibrils prepared at pH 2.0 and composed of the protein insulin by manipulating electrostatic interactions within the fibril architecture. We demonstrate that strong electrostatic repulsion is sufficient to disrupt the hydrogen-bonded, cross-β network that links insulin molecules and ultimately results in fibril dissociation. The extent of this dissociation correlates well with predictions for colloidal models considering the net global charge of the polypeptide chain, although the kinetics of the process is regulated by the charge state of a single amino acid. We found the fibrils to be maximally stable under their formation conditions. Partial disruption of the cross-β network under conditions where the fibrils remain intact leads to a reduction in their stability. Together, these results support the contention that a major determinant of amyloid stability stems from the interactions in the structured core, and show how the control of electrostatic interactions can be used to characterize the factors that modulate fibril stability.
Resumo:
We investigate the effect of a perpendicular magnetic field on the single-particle charging spectrum of a graphene quantum dot embedded inline with a nanoribbon. We observe uniform shifts in the single-particle spectrum which coincide with peaks in the magnetoconductance, implicating Landau level condensation and edge state formation as the mechanism underlying magnetic field-enhanced transmission through graphene nanostructures. The experimentally determined ratio of bulk to edge states is supported by single-particle band-structure simulations, while a fourfold beating of the Coulomb blockade transmission amplitude points to many-body interaction effects during Landau level condensation of the ν=0 state. © 2012 American Physical Society.
Resumo:
To observe the axial growth behavior of InAs on GaAs nanowires, InAs was grown for different growth durations on GaAs nanowires using Au nanoparticles. Through transmission electron microscopy, we have observed the following evolution steps for the InAs growth. (1) In the initial stages of the InAs growth, InAs clusters into a wedge shape preferentially at an edge of the Au/GaAs interface by minimizing Au/InAs interfacial area; (2) with further growth of InAs, the Au particle moves sidewards and then downwards by preserving an interface with GaAs nanowire sidewalls. The lower interfacial energy of Au/GaAs than that of Au/In As is attributed to be the reason for such Au movement. This downward movement of the Au nanoparticle later terminates when the nanoparticle encounters InAs growing radially on the GaAs nanowire sidewalls, and with further supply of In and As vapor reactants, the Au nanoparticle assists the formation of InAs branches. These observations give some insights into vapor-liquid-solid growth and the formation of kinks in nanowire heterostructures. © 2008 Materials Research Society.
Resumo:
The kinks formation in heterostructural nanowires was observed to be dominant when InAs nanowires were grown on GaAs nanowires. Nanowires were grown through vapor-liquid-solid (VLS) mechanism in an MOCVD (metalorganic chemical vapor deposition) reactor. GaAs nanowires were grown in [1 1 1 ]B direction on a GaAs (1 1 1 )B substrate. When InAs nanowires grown on the GaAs nanowires, most of the InAs nanowires changed their growth directions from [1 1 1 ]B to other 〈111〉B directions. The kinks formation is ascribed to the large compressive misfit strain at the GaAs/InAs interface (7.2% lattice mismatch between GaAs and InAs) and the high mobility of indium species during MOCVD growth. The in-depth analysis of the kinks formation was done by growing InAs for short times on the GaAs nanowires and characterizing the samples. The hindrance to compressively strain InAs to form coherent layers with GaAs pushed the InAs/Au interfaces to the sides of the GaAs nanowires growth ends. New InAs/Au interfaces have generated at the sides of GaAs nanowires, due to lateral growth of InAs on GaAs nanowires. These new interfaces led the InAs nanowires growth in other 〈111〉B directions. The morphological and structural features of these heterostructural kinked nanowires were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. © 2006 IEEE.
Resumo:
Solid-state dye-sensitized solar cells rely on effective infiltration of a solid-state hole-transporting material into the pores of a nanoporous TiO 2 network to allow for dye regeneration and hole extraction. Using microsecond transient absorption spectroscopy and femtosecond photoluminescence upconversion spectroscopy, the hole-transfer yield from the dye to the hole-transporting material 2,2′,7,7′-tetrakis(N,N-di-p- methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) is shown to rise rapidly with higher pore-filling fractions as the dye-coated pore surface is increasingly covered with hole-transporting material. Once a pore-filling fraction of ≈30% is reached, further increases do not significantly change the hole-transfer yield. Using simple models of infiltration of spiro-OMeTAD into the TiO2 porous network, it is shown that this pore-filling fraction is less than the amount required to cover the dye surface with at least a single layer of hole-transporting material, suggesting that charge diffusion through the dye monolayer network precedes transfer to the hole-transporting material. Comparison of these results with device parameters shows that improvements of the power-conversion efficiency beyond ≈30% pore filling are not caused by a higher hole-transfer yield, but by a higher charge-collection efficiency, which is found to occur in steps. The observed sharp onsets in photocurrent and power-conversion efficiencies with increasing pore-filling fraction correlate well with percolation theory, predicting the points of cohesive pathway formation in successive spiro-OMeTAD layers adhered to the pore walls. From percolation theory it is predicted that, for standard mesoporous TiO2 with 20 nm pore size, the photocurrent should show no further improvement beyond an ≈83% pore-filling fraction. Solid-state dye-sensitized solar cells capable of complete hole transfer with pore-filling fractions as low as ∼30% are demonstrated. Improvements of device efficiencies beyond ∼30% are explained by a stepwise increase in charge-collection efficiency in agreement with percolation theory. Furthermore, it is predicted that, for a 20 nm pore size, the photocurrent reaches a maximum at ∼83% pore-filling fraction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In the central part of the Delft railway tunnel project, an underground railway station is being built at very close distance to the existing station building, which is still in operation. Although elaborate sensitivity analyses were made, some unforeseen deformations were encountered during the first phases of the execution process. Especially the installation of temporary sheet pile walls as well as the installation of a huge amount of grout anchor piles resulted in deformations exceeding the predicted final deformations as well as the boundary values defined by a level I limiting tensile strain method (LTSM) approach. In order to ensure the execution process, supplementary analyses were made to predict future deformations, and this for multiple cross sections. These deformations were implemented into a finite element model of the masonry of the building in order to define probable crack formation. This Level II LTSM approach made it possible to increase the initially foreseen deformation criteria and the continuation of the works. Design steps, design models and monitoring results will be explained within this paper.
Resumo:
The paper presents a new concept of locomotion for wheeled or legged robots through an object-free space. The concept is inspired by the behaviour of spiders forming silk threads to move in 3D space. The approach provides the possibility of variation in thread diameter by deforming source material, therefore it is useful for a wider coverage of payload by mobile robots. As a case study, we propose a technology for descending locomotion through a free space with inverted formation of threads in variable diameters. Inverted thread formation is enabled with source material thermoplastic adhesive (TPA) through thermally-induced phase transition. To demonstrate the feasibility of the technology, we have designed and prototyped a 300-gram wheeled robot that can supply and deform TPA into a thread and descend with the thread from an existing hanging structure. Experiment results suggest repeatable inverted thread formation with a diameter range of 1.1-4.5 mm, and a locomotion speed of 0.73 cm per minute with a power consumption of 2.5 W. © 2013 IEEE.