198 resultados para test adaptation
em Cambridge University Engineering Department Publications Database
Discriminative language model adaptation for Mandarin broadcast speech transcription and translation
Resumo:
This paper investigates unsupervised test-time adaptation of language models (LM) using discriminative methods for a Mandarin broadcast speech transcription and translation task. A standard approach to adapt interpolated language models to is to optimize the component weights by minimizing the perplexity on supervision data. This is a widely made approximation for language modeling in automatic speech recognition (ASR) systems. For speech translation tasks, it is unclear whether a strong correlation still exists between perplexity and various forms of error cost functions in recognition and translation stages. The proposed minimum Bayes risk (MBR) based approach provides a flexible framework for unsupervised LM adaptation. It generalizes to a variety of forms of recognition and translation error metrics. LM adaptation is performed at the audio document level using either the character error rate (CER), or translation edit rate (TER) as the cost function. An efficient parameter estimation scheme using the extended Baum-Welch (EBW) algorithm is proposed. Experimental results on a state-of-the-art speech recognition and translation system are presented. The MBR adapted language models gave the best recognition and translation performance and reduced the TER score by up to 0.54% absolute. © 2007 IEEE.
Resumo:
Language models (LMs) are often constructed by building multiple individual component models that are combined using context independent interpolation weights. By tuning these weights, using either perplexity or discriminative approaches, it is possible to adapt LMs to a particular task. This paper investigates the use of context dependent weighting in both interpolation and test-time adaptation of language models. Depending on the previous word contexts, a discrete history weighting function is used to adjust the contribution from each component model. As this dramatically increases the number of parameters to estimate, robust weight estimation schemes are required. Several approaches are described in this paper. The first approach is based on MAP estimation where interpolation weights of lower order contexts are used as smoothing priors. The second approach uses training data to ensure robust estimation of LM interpolation weights. This can also serve as a smoothing prior for MAP adaptation. A normalized perplexity metric is proposed to handle the bias of the standard perplexity criterion to corpus size. A range of schemes to combine weight information obtained from training data and test data hypotheses are also proposed to improve robustness during context dependent LM adaptation. In addition, a minimum Bayes' risk (MBR) based discriminative training scheme is also proposed. An efficient weighted finite state transducer (WFST) decoding algorithm for context dependent interpolation is also presented. The proposed technique was evaluated using a state-of-the-art Mandarin Chinese broadcast speech transcription task. Character error rate (CER) reductions up to 7.3 relative were obtained as well as consistent perplexity improvements. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the development of the 2003 CU-HTK large vocabulary speech recognition system for Conversational Telephone Speech (CTS). The system was designed based on a multi-pass, multi-branch structure where the output of all branches is combined using system combination. A number of advanced modelling techniques such as Speaker Adaptive Training, Heteroscedastic Linear Discriminant Analysis, Minimum Phone Error estimation and specially constructed Single Pronunciation dictionaries were employed. The effectiveness of each of these techniques and their potential contribution to the result of system combination was evaluated in the framework of a state-of-the-art LVCSR system with sophisticated adaptation. The final 2003 CU-HTK CTS system constructed from some of these models is described and its performance on the DARPA/NIST 2003 Rich Transcription (RT-03) evaluation test set is discussed.
Resumo:
In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaptation may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences. ©2010 IEEE.
Resumo:
State-of-the-art large vocabulary continuous speech recognition (LVCSR) systems often combine outputs from multiple subsystems developed at different sites. Cross system adaptation can be used as an alternative to direct hypothesis level combination schemes such as ROVER. In normal cross adaptation it is assumed that useful diversity among systems exists only at acoustic level. However, complimentary features among complex LVCSR systems also manifest themselves in other layers of modelling hierarchy, e.g., subword and word level. It is thus interesting to also cross adapt language models (LM) to capture them. In this paper cross adaptation of multi-level LMs modelling both syllable and word sequences was investigated to improve LVCSR system combination. Significant error rate gains up to 6.7% rel. were obtained over ROVER and acoustic model only cross adaptation when combining 13 Chinese LVCSR subsystems used in the 2010 DARPA GALE evaluation. © 2010 ISCA.