10 resultados para temperatura, ozono, clima, aria, scenario

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Companies aiming to be 'sustainability leaders' in their sector and governments wanting to support their ambitions need a means to assess the changes required to make a significant difference in the impact of their whole sector. Previous work on scenario analysis/scenario planning demonstrates extensive developments and applications, but as yet few attempts to integrate the 'triple bottom line' concerns of sustainability into scenario planning exercises. This paper, therefore, presents a methodology for scenario analysis of large change to an entire sector. The approach includes calculation of a 'triple bottom line graphic equaliser' to allow exploration and evaluation of the trade-offs between economic, environmental and social impacts. The methodology is applied to the UK's clothing and textiles sector, and results from the study of the sector are summarised. In reflecting on the specific study, some suggestions are made about future application of a similar methodology, including a template of candidate solutions that may lead to significant reduction in impacts. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to guarantee a sustainable supply of future energy demand without compromising the environment, some actions for a substantial reduction of CO 2 emissions are nowadays deeply analysed. One of them is the improvement of the nuclear energy use. In this framework, innovative gas-cooled reactors (both thermal and fast) seem to be very attractive from the electricity production point of view and for the potential industrial use along the high temperature processes (e.g., H 2 production by steam reforming or I-S process). This work focuses on a preliminary (and conservative) evaluation of possible advantages that a symbiotic cycle (EPR-PBMR-GCFR) could entail, with special regard to the reduction of the HLW inventory and the optimization of the exploitation of the fuel resources. The comparison between the symbiotic cycle chosen and the reference one (once-through scenario, i.e., EPR-SNF directly disposed) shows a reduction of the time needed to reach a fixed reference level from ∼170000 years to ∼1550 years (comparable with typical human times and for this reason more acceptable by the public opinion). In addition, this cycle enables to have a more efficient use of resources involved: the total electric energy produced becomes equal to ∼630 TWh/year (instead of only ∼530 TWh/year using only EPR) without consuming additional raw materials. © 2009 Barbara Vezzoni et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss key implementation challenges of a systems approach that combines System Dynamics, Scenario Planning and Qualitative Data Analysis methods in tackling a complex problem. We present the methods and the underlying framework. We then detail the main difficulties encountered in designing and planning the Scenario Planning workshop and how they were overcome, such as finding and involving the stakeholders and customising the process to fit within timing constraints. After presenting the results from this application, we argue that the consultants or system analysts need to engage with the stakeholders as process facilitators and not as system experts in order to gain commitment, trust and to improve information sharing. They also need be ready to adapt their tools and processes as well as their own thinking for more effective complex problem solving.