129 resultados para syntatic transfer
em Cambridge University Engineering Department Publications Database
Resumo:
When learning a difficult motor task, we often decompose the task so that the control of individual body segments is practiced in isolation. But on re-composition, the combined movements can result in novel and possibly complex internal forces between the body segments that were not experienced (or did not need to be compensated for) during isolated practice. Here we investigate whether dynamics learned in isolation by one part of the body can be used by other parts of the body to immediately predict and compensate for novel forces between body segments. Subjects reached to targets while holding the handle of a robotic, force-generating manipulandum. One group of subjects was initially exposed to the novel robot dynamics while seated and was then tested in a standing position. A second group was tested in the reverse order: standing then sitting. Both groups adapted their arm dynamics to the novel environment, and this movement learning transferred between seated and standing postures and vice versa. Both groups also generated anticipatory postural adjustments when standing and exposed to the force field for several trials. In the group that had learned the dynamics while seated, the appropriate postural adjustments were observed on the very first reach on standing. These results suggest that the CNS can immediately anticipate the effect of learned movement dynamics on a novel whole-body posture. The results support the existence of separate mappings for posture and movement, which encode similar dynamics but can be adapted independently.
Resumo:
We demonstrate a parameter extraction algorithm based on a theoretical transfer function, which takes into account a converging THz beam. Using this, we successfully extract material parameters from data obtained for a quartz sample with a THz time domain spectrometer. © 2010 IEEE.
Resumo:
Microarraying involves laying down genetic elements onto a solid substrate for DNA analysis on a massively parallel scale. Microarrays are prepared using a pin-based robotic platform to transfer liquid samples from microtitre plates to an array pattern of dots of different liquids on the surface of glass slides where they dry to form spots diameter < 200 μm. This paper presents the design, materials selection, micromachining technology and performance of reservoir pins for microarraying. A conical pin is produced by (i) conventional machining of stainless steel or wet etching of tungsten wire, followed by (ii) micromachining with a focused laser to produce a microreservoir and a capillary channel structure leading from the tip. The pin has a flat end diameter < 100 μm from which a 500 μm long capillary channel < 15 μm wide leads up the pin to a reservoir. Scanning electron micrographs of the metal surface show roughness on the scale of 10 μm, but the pins nevertheless give consistent and reproducible spotting performance. The pin capacity is 80 nanolitres of fluid containing DNA, and at least 50 spots can be printed before replenishing the reservoir. A typical robot holds can hold up to 64 pins. This paper discusses the fabrication technology, the performance and spotting uniformity for reservoir pins, the possible limits to miniaturization of pins using this approach, and the future prospects for contact and non-contact arraying technology.