38 resultados para synchronization protocols

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human locomotion is known to be influenced by observation of another person's gait. For example, athletes often synchronize their step in long distance races. However, how interaction with a virtual runner affects the gait of a real runner has not been studied. We investigated this by creating an illusion of running behind a virtual model (VM) using a treadmill and large screen virtual environment showing a video of a VM. We looked at step synchronization between the real and virtual runner and at the role of the step frequency (SF) in the real runner's perception of VM speed. We found that subjects match VM SF when asked to match VM speed with their own (Figure 1). This indicates step synchronization may be a strategy of speed matching or speed perception. Subjects chose higher speeds when VMSF was higher (though VM was 12km/h in all videos). This effect was more pronounced when the speed estimate was rated verbally while standing still. (Figure 2). This may due to correlated physical activity affecting the perception of VM speed [Jacobs et al. 2005]; or step synchronization altering the subjects' perception of self speed [Durgin et al. 2007]. Our findings indicate that third person activity in a collaborative virtual locomotive environment can have a pronounced effect on an observer's gait activity and their perceptual judgments of the activity of others: the SF of others (virtual or real) can potentially influence one's perception of self speed and lead to changes in speed and SF. A better understanding of the underlying mechanisms would support the design of more compelling virtual trainers and may be instructive for competitive athletics in the real world. © 2009 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown in the paper how robustness can be guaranteed for consensus protocols with heterogeneous dynamics in a scalable and decentralized way i.e. by each agent satisfying a test that does not require knowledge of the entire network. Random graph examples illustrate that the proposed certificates are not conservative for classes of large scale networks, despite the heterogeneity of the dynamics, which is a distinctive feature of this work. The conditions hold for symmetric protocols and more conservative stability conditions are given for general nonsymmetric interconnections. Nonlinear extensions in an IQC framework are finally discussed. Copyright © 2005 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency entrainment and nonlinear synchronization are commonly observed between simple oscillatory systems, but their occurrence and behavior in continuum fluid systems are much less well understood. Motivated by possible applications to geophysical fluid systems, such as in atmospheric circulation and climate dynamics, we have carried out an experimental study of the interaction of fully developed baroclinic instability in a differentially heated, rotating fluid annulus with an externally imposed periodic modulation of the thermal boundary conditions. In quasiperiodic and chaotic amplitude-modulated traveling wave regimes, the results demonstrate a strong interaction between the natural periodic modulation of the wave amplitude and the externally imposed forcing. This leads to partial or complete phase synchronization. Synchronization effects were observed even with very weak amplitudes of forcing, and were found with both 1:1 and 1:2 frequency ratios between forcing and natural oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronization phenomena in a fluid dynamical analogue of atmospheric circulation is studied experimentally by investigating the dynamics of a pair of thermally coupled, rotating baroclinic annulus systems. The coupling between the systems is in the well-known master-slave configuration in both periodic and chaotic regimes. Synchronization tools such as phase dynamics analysis are used to study the dynamics of the coupled system and demonstrate phase synchronization and imperfect phase synchronization, depending upon the coupling strength and parameter mismatch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronization of periodic and chaotic oscillations between two coupled rotating baroclinic fluid systems will be presented. The numerical part of the study involves a pair of coupled two-layer quasigeostrophic models, and the experimental part comprises two thermally coupled baroclinic fluid annuli, rotating one above the other on the same turntable. Phase synchronization and imperfect synchronization (phase slips) have been found in both model and experiments, and model simulations also exhibit chaos-destroying synchronization. © 2008 IOP Publishing Ltd.