23 resultados para swd: Multi-Touch-Screen
em Cambridge University Engineering Department Publications Database
Resumo:
In the design of capacitive touch-screen panels, electrodes are patterned to improve touch sensitivity. In this paper, we analyze the relationship between electrode patterns and touch sensitivity. An approach is presented where simulations are used to measure the sensitivity of touch-screen panels based on capacitance changes for various electrode patterns. Touch sensitivity increases when the touch object is positioned in close proximity to fringing electric fields generated by the patterned electrodes. Three new electrode patterns are proposed to maximize field fringing in order to increase touch sensitivity by purely electrode patterning means. Simulations showed an increased touch sensitivity of up to 5.4%, as compared with the more conventional interlocking diamonds pattern. Here, we also report empirical findings for fabricated touch-screen panels. © 2005-2012 IEEE.
Resumo:
Recent efforts towards the fabrication of touch sensing systems are presented, in which zinc oxide nanowire arrays are embedded in a polymer matrix to produce an engineered composite material. In the future, these sensor systems will be fully flexible and multi-touch as intended for Nokia's 'Morph' concept device.
Resumo:
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.
Resumo:
Multi-walled carbon nanotubes (MWNTs) have been proposed for use in many applications and concerns about their potential effect on human health have led to the interest in understanding the interactions between MWNTs and human cells. One important technique is the visualisation of the intracellular distribution of MWNTs. We exposed human macrophage cells to unpurified MWNTs and found that a decrease in cell viability was correlated with uptake of MWNTs due to mainly necrosis. Cells treated with purified MWNTs and the main contaminant Fe(2)O(3) itself yielded toxicity only from the nanotubes and not from the Fe(2)O(3). We used 3-D dark-field scanning transmission electron microscopy (DF-STEM) tomography of freeze-dried whole cells as well as confocal and scanning electron microscopy (SEM) to image the cellular uptake and distribution of unpurified MWNTs. We observed that unpurified MWNTs entered the cell both actively and passively frequently inserting through the plasma membrane into the cytoplasm and the nucleus. These suggest that MWNTs may cause incomplete phagocytosis or mechanically pierce through the plasma membrane and result in oxidative stress and cell death.
Resumo:
This paper describes multiple field-coupled simulations and device characterization of fully CMOS-MEMS-compatible smart gas sensors. The sensor structure is designated for gas/vapour detection at high temperatures (>300 °C) with low power consumption, high sensitivity and competent mechanic robustness employing the silicon-on-insulator (SOI) wafer technology, CMOS process and micromachining techniques. The smart gas sensor features micro-heaters using p-type MOSFETs or polysilicon resistors and differentially transducing circuits for in situ temperature measurement. Physical models and 3D electro-thermo-mechanical simulations of the SOI micro-hotplate induced by Joule, self-heating, mechanic stress and piezoresistive effects are provided. The electro-thermal effect initiates and thus affects electronic and mechanical characteristics of the sensor devices at high temperatures. Experiments on variation and characterization of micro-heater resistance, power consumption, thermal imaging, deformation interferometry and dynamic thermal response of the SOI micro-hotplate have been presented and discussed. The full integration of the smart gas sensor with automatically temperature-reading ICs demonstrates the lowest power consumption of 57 mW at 300 °C and fast thermal response of 10 ms. © 2008 IOP Publishing Ltd.
Resumo:
A previously developed Stochastic Reactor Model (SRM) is used to simulate combustion in a four cylinder in-line four-stroke naturally aspirated direct injection Spark Ignition (SI) engine modified to run in Homogeneous Charge Compression Ignition (HCCI) mode with a Negative Valve Overlap (NVO). A portion of the fuel is injected during NVO to increase the cylinder temperature and enable HCCI combustion at a compression ratio of 12:1. The model is coupled with GT-Power, a one-dimensional engine simulation tool used for the open valve portion of the engine cycle. The SRM is used to model in-cylinder mixing, heat transfer and chemistry during the NVO and main combustion. Direct injection is simulated during NVO in order to predict heat release and internal Exhaust Gas Recycle (EGR) composition and mass. The NOx emissions and simulated pressure profiles match experimental data well, including the cyclic fluctuations. The model predicts combustion characteristics at different fuel split ratios and injection timings. The effect of fuel reforming on ignition timing is investigated along with the causes of cycle to cycle variations and unstable operation. A detailed flux analysis during NVO unearths interesting results regarding the effect of NOx on ignition timing compared with its effect during the main combustion. © 2009 SAE International.
Resumo:
The separation of independent sources from mixed observed data is a fundamental and challenging problem. In many practical situations, observations may be modelled as linear mixtures of a number of source signals, i.e. a linear multi-input multi-output system. A typical example is speech recordings made in an acoustic environment in the presence of background noise and/or competing speakers. Other examples include EEG signals, passive sonar applications and cross-talk in data communications. In this paper, we propose iterative algorithms to solve the n × n linear time invariant system under two different constraints. Some existing solutions for 2 × 2 systems are reviewed and compared.
Resumo:
In HCCI engines, the Air/Fuel Ratio (AFR) and Residual Gas Fraction (RGF) are difficult to control during the SI-HCCI-SI transition, and this may result in incomplete combustion and/or high pressure raise rates. As a result, there may be undesirably high engine load fluctuations. The objectives of this work are to further understand this process and develop control methods to minimize these load fluctuations. This paper presents data on instantaneous AFR and RGF measurements, both taken by novel experimental techniques. The data provides an insight into the cyclic AFR and RGF fluctuations during the switch. These results suggest that the relatively slow change in the intake Manifold Air Pressure (MAP) and actuation time of the Variable Valve Timing (VVT) are the main causes of undesired AFR and RGF fluctuations, and hence an unacceptable Net IMEP (NIMEP) fluctuation. We also found large cylinder-to-cylinder AFR variations during the transition. Therefore, besides throttle opening control and VVT shifting, cyclic and individual cylinder fuel injection control is necessary to achieve a smooth transition. The control method was developed and implemented in a test engine, and the result was a considerably reduced NIMEP fluctuation during the mode switch. The instantaneous AFR and RGF measurements could furthermore be adopted to develop more sophisticated control methods for SI-HCCI-SI transitions. © 2010 SAE International.
Resumo:
We report on the electrical characteristics of plasma enhanced chemical vapour deposition (PECVD)-grown, multi-walled carbon nanotube (MWCNT) devices made by a new fabrication method, PMMA suspended dispersion. This method makes it possible to suspend nanotubes between metal electrodes and to remove unwanted nanotubes from the substrate. The measurements show that the MWCNTs are metallic and able to maintain a current density ∼2×106 A/cm2 for more than 15 days with a maximum current density of ∼1.8×107 A/cm2. This high current density and reliability will make PECVD-grown MWCNTs applicable to field emission cathodes. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We have fabricated a series of polymer stabilized chiral nematic test cells for use as flexoelectro-optic devices. The devices fabricated were based on commercial chiral nematic mixtures which were polymer stabilized so as to enhance the uniformity and stability of the uniform lying helix texture in the cells. During fabrication and test procedures a series of unusual scattering states have been observed within the devices at different viewing angles. The observations made so far indicate that the properties of the scattering state lies somewhere between the focal conic texture and the Grandjean or planar texture and that the devices exhibit both a helical pitch selective reflection and scattering effect. What is even more dramatic is that the wavelength selectivity of the scattering effect can be tuned by an applied field. In addition, we show that it is possible to achieve good uniform lying helix textures from such devices. Moreover, we show that in certain cases the spontaneous alignment of the helix in the plane of the device opens up the possibility of a new mode of switching. Flexoelectric, Redshift, Coloured scattering, Liquid crystal, Polymer-stabilized liquid-crystal;.