22 resultados para structural control.

em Cambridge University Engineering Department Publications Database


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigates the use of inertial actuators to reduce the sound radiated by a submarine hull under excitation from the propeller. The axial forces from the propeller are tonal at the blade passing frequency. The hull is modeled as a fluid-loaded cylindrical shell with ring stiffeners and equally spaced bulkheads. The cylinder is closed at each end by circular plates and conical end caps. The forces from the propeller are transmitted to the hull by a rigid foundation connected to the propeller shaft. Inertial actuators are used as the structural control inputs. The actuators are arranged in circumferential arrays and attached to the internal end plates of the hull. Two active control techniques corresponding to active vibration control and discrete structural acoustic sensing are implemented to attenuate the structural and acoustic responses of the submarine. In the latter technique, error information on the radiated sound fields is provided by a discrete structural acoustic sensor. An acoustic transfer function is defined to estimate the far field sound pressure from a single point measurement on the hull. The inertial actuators are shown to provide control forces with a magnitude large enough to reduce the sound due to hull vibration. © 2012 American Society of Mechanical Engineers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to the structural control of individual carbon nanotubes (CNTs), the morphological control of their assemblies is crucial to realize miniaturized CNT devices. Microgradients in the thickness of catalyst are used to enrich the variety of available self-organized morphologies of CNTs. Microtrenches were fabricated in gate/spacer/cathode trilayers using a conventional self-aligned top-down process and catalyst exhibiting a microgradient in its thickness was formed on the cathode by sputter deposition through gate slits. CNTs, including single-walled CNTs, of up to 1μm in length were grown within 5-15 s by chemical vapor deposition. The tendency of thin CNTs to aggregate caused interactions between CNTs with different growth rates, yielding various morphologies dependent on the thickness of the catalyst. The field emission properties of several types of CNT assemblies were evaluated. The ability to produce CNTs with tailored morphologies by engineering the spatial distribution of catalysts will enhance their performance in devices. © 2011 The Japan Society of Applied Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1-8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9-14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submarines are efficient sources of low frequency radiated noise due to the vibrations induced by the rotation of the propeller in a non uniform wake. In this work the possibility of using inertial actuators to reduce the far field sound pressure is investigated. The submerged vessel is modelled as a cylindrical shell with two conical end caps. Complicating effects such as ring stiffeners, bulkheads and the fluid loading are taken into account. A harmonic radial force is transmitted from the propeller to the hull through the stern end cone and it is tonal at the blade passing frequency (rotational speed of the shaft multiplied by the number of blades). The actuators are attached at the inside of the prow end cone to form a circumferential array. Both Active Vibration Control (AVC) and Active Structural Acoustic Control (ASAC) are analysed and it is shown that the inertial actuators can significantly reduce the far field sound pressure.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper extends a state projection method for structure preserving model reduction to situations where only a weaker notion of system structure is available. This weaker notion of structure, identifying the causal relationship between manifest variables of the system, is especially relevant is settings such as systems biology, where a clear partition of state variables into distinct subsystems may be unknown, or not even exist. The resulting technique, like similar approaches, does not provide theoretical performance guarantees, so an extensive computational study is conducted, and it is observed to work fairly well in practice. Moreover, conditions characterizing structurally minimal realizations and sufficient conditions characterizing edge loss resulting from the reduction process, are presented. ©2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microvibrations, at frequencies between 1 and 1000 Hz, generated by on board equipment, propagate throughout a spacecraft structure affecting the performance of sensitive payloads. The purpose of this work is to investigate strategies to model and reduce these dynamic disturbances by active control. Initial studies were performed by considering a mass loaded panel where the disturbance excitation source consisted of point forces, the objective being to minimise the displacement at an arbitrary output location. Piezoelectric patches acting as sensors and actuators were used. The equations of motion are derived by using Lagrange's equation with modal shapes as Ritz functions. The number of sensors/actuators and their location is variable. The set of equations obtained is then transformed into state variables and some initial controller design studies have been undertaken. These are based on feedback control implemented using a full state feedback and an observer which reconstructs the state vector from the available sensor signal. Here, the basics behind the structural modelling and controller design will be described. This preliminary analysis will also be used to identify short to medium term further work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. © 2012 Elsevier Ltd. All rights reserved.