12 resultados para strong effects
em Cambridge University Engineering Department Publications Database
Resumo:
The effect of surface tension on global stability of co-flow jets and wakes at a moderate Reynolds number is studied. The linear temporal two-dimensional global modes are computed without approximations. All but one of the flow cases under study are globally stable without surface tension. It is found that surface tension can cause the flow to be globally unstable if the inlet shear (or equivalently, the inlet velocity ratio) is strong enough. For even stronger surface tension, the flow is re-stabilized. As long as there is no change of the most unstable mode, increasing surface tension decreases the oscillation frequency. Short waves appear in the high-shear region close to the nozzle, and their wavelength increases with increasing surface tension. The critical shear (the weakest inlet shear at which a global instability is found) gives rise to antisymmetric disturbances for the wakes and symmetric disturbances for the jets. However, at stronger shear, the opposite symmetry can be the most unstable one, in particular for wakes at high surface tension. The results show strong effects of surface tension that should be possible to reproduce experimentally as well as numerically.
Resumo:
We compare and contrast the effects of two distinctly different mechanisms of coupling (mechanical and electrical) on the parametric sensitivity of micromechanical sensors utilizing mode localization for sensor applications. For the first time, the strong correlation between mode localization and the phenomenon of 'eigenvalue loci-veering' is exploited for accurate quantification of the strength of internal coupling in mode localized sensors. The effects of capacitive coupling-spring tuning on the parametric sensitivity of electrically coupled resonators utilizing this sensing paradigm is also investigated and a mass sensor with sensitivity tunable by over 400% is realized. ©2009 IEEE.
Resumo:
The effects of damping on energy sharing in coupled systems are investigated. The approach taken is to compute the forced response patterns of various idealised systems, and from these to calculate the parameters of Statistical Energy Analysis model for the systems using the matrix inversion approach [1]. It is shown that when SEA models are fitted by this procedure, the values of the coupling loss factors are significantly dependent on damping except when it is sufficiently high. For very lightly damped coupled systems, varying the damping causes the values of the coupling loss factor to vary in direct proportion to the internal loss factor. In the limit of zero damping, the coupling loss factors tend to zero. This is a view which contrasts strongly with 'classical' SEA, in which coupling loss factors are determined by the nature of the coupling between subsystems, independent of subsystem damping. One implication of the strong damping dependency is that equipartition of modal energy under low damping does not in general occur. This is contrary to the classical SEA prediction that equipartition of modal energy always occurs if the damping can be reduced to a sufficiently small value. It is demonstrated that the use of this classical assumption can lead to gross overestimates of subsystem energy ratios, especially in multi-subsystem structures. © 1996 Academic Press Limited.
Resumo:
Like large insects, micro air vehicles operate at low Reynolds numbers O(1; 000 - 10; 000) in a regime characterized by separated flow and strong vortices. The leading-edge vortex has been identified as a significant source of high lift on insect wings, but the conditions required for the formation of a stably attached leading-edge vortex are not yet known. The waving wing is designed to model the translational phase of an insect wing stroke by preserving the unsteady starting and stopping motion as well as three-dimensionality in both wing geometry (via a finite-span wing) and kinematics (via wing rotation). The current study examines the effect of the spanwise velocity gradient on the development of the leading-edge vortex along the wing as well as the effects of increasing threedimensionalityby decreasing wing aspect ratio from four to two. Dye flow visualization and particle image velocimetry reveal that the leading-edge vortices that form on a sliding or waving wing have a very high aspect ratio. The structure of the flow is largely two-dimensional on both sliding and waving wings and there is minimal interaction between the leading-edge vortices and the tip vortex. Significant spanwise flow was observed on the waving wing but not on the sliding wing. Despite the increased three-dimensionality on the aspect ratio 2 waving wing, there is no evidence of an attached leading-edge vortex and the structure of the flow is very similar to that on the higher-aspect-ratio wing and sliding wing. © Copyright 2010.
Resumo:
The effect of size and slip system configuration on the tensile stress-strain response of micron-sized planar crystals as obtained from discrete dislocation plasticity simulations is presented. The crystals are oriented for either single or symmetric double slip. With the rotation of the tensile axis unconstrained, there is a strong size dependence, with the flow strength increasing with decreasing specimen size. Below a certain specimen size, the flow strength of the crystals is set by the nucleation strength of the initially present Frank-Read sources. The main features of the size dependence are the same for both the single and symmetric double slip configurations.
Resumo:
Preferential species diffusion is known to have important effects on local flame structure in turbulent premixed flames, and differential diffusion of heat and mass can have significant effects on both local flame structure and global flame parameters, such as turbulent flame speed. However, models for turbulent premixed combustion normally assume that atomic mass fractions are conserved from reactants to fully burnt products. Experiments reported here indicate that this basic assumption may be incorrect for an important class of turbulent flames. Measurements of major species and temperature in the near field of turbulent, bluff-body stabilized, lean premixed methane-air flames (Le=0.98) reveal significant departures from expected conditional mean compositional structure in the combustion products as well as within the flame. Net increases exceeding 10% in the equivalence ratio and the carbon-to-hydrogen atom ratio are observed across the turbulent flame brush. Corresponding measurements across an unstrained laminar flame at similar equivalence ratio are in close agreement with calculations performed using Chemkin with the GRI 3.0 mechanism and multi-component transport, confirming accuracy of experimental techniques. Results suggest that the large effects observed in the turbulent bluff-body burner are cause by preferential transport of H 2 and H 2O through the preheat zone ahead of CO 2 and CO, followed by convective transport downstream and away from the local flame brush. This preferential transport effect increases with increasing velocity of reactants past the bluff body and is apparently amplified by the presence of a strong recirculation zone where excess CO 2 is accumulated. © 2011 The Combustion Institute.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to acoustic forcing in a laboratory-scale stratified burner. The double-swirler, double-channel annular burner was specially designed to generate acoustic velocity oscillations and radial fuel stratification at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the flame response are not considered. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a hot wire anemometer and photomultiplier tubes with narrowband OH*/CH* interference filters. Time-averaged CH* chemiluminescence intensities were measured using an intensified CCD camera. Results show that flame stabilization mechanisms vary depending on stratification ratio for a constant global equivalence ratio. For a uniformly premixed condition, an enveloped M-shaped flame is observed. For stratified conditions, however, a dihedral V-flame and a detached flame are developed for outer stream and inner stream fuel enrichment cases, respectively. Flame transfer function (FTF) measurement results indicate that a V-shaped flame tends to damp incident flow oscillations, while a detached flame acts as a strong amplifier relative to the uniformly premixed condition. The phase difference of FTF increases in the presence of stratification. More importantly, the dynamic characteristics obtained from the forced stratified flame measurements are well correlated with unsteady flame behavior under limit-cycle pressure oscillations. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, which has not been well explored to date. Copyright © 2011 by ASME.
Resumo:
Looking for a target in a visual scene becomes more difficult as the number of stimuli increases. In a signal detection theory view, this is due to the cumulative effect of noise in the encoding of the distractors, and potentially on top of that, to an increase of the noise (i.e., a decrease of precision) per stimulus with set size, reflecting divided attention. It has long been argued that human visual search behavior can be accounted for by the first factor alone. While such an account seems to be adequate for search tasks in which all distractors have the same, known feature value (i.e., are maximally predictable), we recently found a clear effect of set size on encoding precision when distractors are drawn from a uniform distribution (i.e., when they are maximally unpredictable). Here we interpolate between these two extreme cases to examine which of both conclusions holds more generally as distractor statistics are varied. In one experiment, we vary the level of distractor heterogeneity; in another we dissociate distractor homogeneity from predictability. In all conditions in both experiments, we found a strong decrease of precision with increasing set size, suggesting that precision being independent of set size is the exception rather than the rule.
Resumo:
The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors.
Resumo:
The 'sustainable remediation' concept has been broadly embraced by industry and governments in recent years in both the US and Europe. However, there is a strong need for more research to enhance its 'practicability'. In an attempt to fill this research gap, this study developed a generalised framework for selecting the most environmentally sustainable remedial technology under various site conditions. Four remediation technologies were evaluated: pump and treat (P&T), enhanced in situ bioremediation (EIB), permeable reactive barrier (PRB), and in situ chemical reduction (ISCR). Within the developed framework and examined site condition ranges, our results indicate that site characteristics have a profound effect on the life cycle impact of various remedial alternatives, thus providing insights and valuable information for determining what is considered the most desired remedy from an environmental sustainability perspective. © 2014 © 2014 University of Newcastle upon Tyne.