15 resultados para strategisches Controlling

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated using high-resolution electron beam lithography circular magnetic particles (nanomagnets) of diameter 60 nm and thickness 7 nm out of the common magnetic alloy supermalloy. The nanomagnets were arranged on rectangular lattices of different periods. A high-sensitivity magneto-optical method was used to measure the magnetic properties of each lattice. We show experimentally how the magnetic properties of a lattice of nanomagnets can be profoundly changed by the magnetostatic interactions between nanomagnets within the lattice. We find that simply reducing the lattice spacing in one direction from 180 nm down to 80 nm (leaving a gap of only 20 nm between edges) causes the lattice to change from a magnetically disordered state to an ordered state. The change in state is accompanied by a peak in the magnetic susceptibility. We show that this is analogous to the paramagnetic-ferromagnetic phase transition which occurs in conventional magnetic materials, although low-dimensionality and kinetic effects must also be considered.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable sub-nanometre gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near infra-red, these disappear for increasing numbers of layers. These doublets arise from plasmonic charge transfer, allowing the direct optical measurement of out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses elementary control strategies to control the phase of an oscillator. Both feedforward and feedback (P and PI) control laws are designed based on the phase response curve (PRC) calculated from the linearized model. The performance is evaluated on a popular model of circadian oscillations. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploiting the body dynamics to control the behavior of robots is one of the most challenging issues, because the use of body dynamics has a significant potential in order to enhance both complexity of the robot design and the speed of movement. In this paper, we explore the control strategy of rapid four-legged locomotion by exploiting the intrinsic body dynamics. Based on the fact that a simple model of four-legged robot is known to exhibit interesting locomotion behavior, this paper analyzes the characteristics of the dynamic locomotion for the purpose of the locomotion control. The results from a series of running experiments with a robot show that, by exploiting the unique characteristics induced by the body dynamics, the forward velocity can be controlled by using a very simple method, in which only one control parameter is required. Furthermore it is also shown that a few of such different control parameters exist, each of them can control the forward velocity. Interestingly, with these parameters, the robot exhibits qualitatively different behavior during the locomotion, which could lead to our comprehensive understanding toward the behavioral diversity of adaptive robotic systems. © 2005 IEEE.