11 resultados para statistical methods
em Cambridge University Engineering Department Publications Database
Resumo:
We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/.
Resumo:
This paper provides an insight into the long-term trends of the four seasonal and annual precipitations in various climatological regions and sub-regions in India. The trends were useful to investigate whether Indian seasonal rainfall is changing in terms of magnitude or location-wise. Trends were assessed over the period of 1954-2003 using parametric ordinary least square fits and non-parametric Mann-Kendall technique. The trend significance was tested at the 95% confidence level. Apart from the trends for individual climatological regions in India and the average for the whole of India, trends were also specifically determined for the possible smaller geographical areas in order to understand how different the trends would be from the bigger spatial scales. The smaller geographical regions consist of the whole southwestern continental state of Kerala. It was shown that there are decreasing trends in the spring and monsoon rainfall and increasing trends in the autumn and winter rainfalls. These changes are not always homogeneous over various regions, even in the very short scales implying a careful regional analysis would be necessary for drawing conclusions regarding agro-ecological or other local projects requiring change in rainfall information. Furthermore, the differences between the trend magnitudes and directions from the two different methods are significantly small and fall well within the significance limit for all the cases investigated in Indian regions (except where noted). © 2010 Springer-Verlag.
Resumo:
Amplitude demodulation is an ill-posed problem and so it is natural to treat it from a Bayesian viewpoint, inferring the most likely carrier and envelope under probabilistic constraints. One such treatment is Probabilistic Amplitude Demodulation (PAD), which, whilst computationally more intensive than traditional approaches, offers several advantages. Here we provide methods for estimating the uncertainty in the PAD-derived envelopes and carriers, and for learning free-parameters like the time-scale of the envelope. We show how the probabilistic approach can naturally handle noisy and missing data. Finally, we indicate how to extend the model to signals which contain multiple modulators and carriers.