7 resultados para starch reserves

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New firms in emerging industries are subject to complex dynamic processes which defy the attempts at prediction embodied in business conjectures. Discontinuous growth is common, but the issue of interruptions in the early growth of new firms has not been adequately addressed in the mainstream literature. We examine the prevalence of interruptions to growth in a cohort study of the growth trajectories of firms founded in 1990, then look to cases studies of individual firms to investigate underlying causes. We find that substantial growth is rare and continuous growth unusual, and that growth interruptions are the result of both internal and external dynamics. The managers of growing firms face shortages of vital resources and significant problems of resource synchronisation and coordination, many of which can lead to what are, in effect, changes of phase state. Meanwhile, the volatile environment of an emerging industry presents particular problems to young firms which have not yet built up reserves to sustain them through short-term crises. However, problem solving by those that survive provides an important source of learning which can underpin their future development. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the greatest obstacles facing the nuclear industry is that of sustainability, both in terms of the finite reserves of uranium ore and the production of highly radiotoxic spent fuel which presents proliferation and environmental hazards. Alternative nuclear technologies have been suggested as a means of delivering enhanced sustainability with proposals including fast reactors, the use of thorium fuel and tiered fuel cycles. The debate as to which is the most appropriate technology continues, with each fuel system and reactor type delivering specific advantages and disadvantages which can be difficult to compare fairly. This paper demonstrates a framework of performance metrics which, coupled with a first-order lumped reactor model to determine nuclide population balances, can be used to quantify the aforementioned pros and cons for a range of different fuel and reactor combinations. The framework includes metrics such as fuel efficiency, spent fuel toxicity and proliferation resistance, and relative cycle performance is analysed through parallel coordinate plots, yielding a quantitative comparison of disparate cycles. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Accelerator Driven Subcritical Reactor (ADSR) is one of the reactor designs proposed for future nuclear energy production. Interest in the ADSR arises from its enhanced and intrinsic safety characteristics, as well as its potential ability to utilize the large global reserves of thorium and to burn legacy actinide waste from other reactors and decommissioned nuclear weapons. The ADSR concept is based on the coupling of a particle accelerator and a subcritical core by means of a neutron spallation target interface. One of the candidate accelerator technologies receiving increasing attention, the Fixed Field Alternating Gradient (FFAG) accelerator, generates a pulsed proton beam. This paper investigates the impact of pulsed proton beam operation on the mechanical integrity of the fuel pin cladding. A pulsed beam induces repetitive temperature changes in the reactor core which lead to cyclic thermal stresses in the cladding. To perform the thermal analysis aspects of this study a code that couples the neutron kinetics of a subcritical core to a cylindrical geometry heat transfer model was developed. This code, named PTS-ADS, enables temperature variations in the cladding to be calculated. These results are then used to perform thermal fatigue analysis and to predict the stress-life behaviour of the cladding. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In current practice the strength evaluation of a bridge system is typically based on firstly using elastic analysis to determine the distribution of load effects in the elements and then checking the ultimate section capacity of those elements. Ductility of the components in most bridge structures permits local yield and subsequent redistribution of the applied loads from the most heavily loaded elements. As a result a bridge can continue to carry additional loading even after one member has yielded, which has conventionally been adopted as the "failure criterion" in bridge strength evaluation. This means that a bridge with inherent redundancy has additional reserves of strength such that the failure of one element does not result in the failure of the complete system. For these bridges warning signs will show up and measures can be undertaken before the ultimate collapse is happening. This paper proposes a rational methodology for calculating the ultimate system strength and including in bridge evaluation the warning level due to redundancy. © 2004 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopolymers are generally considered an eco-friendly alternative to petrochemical polymers due to the renewable feedstock used to produce them and their biodegradability. However, the farming practices used to grow these feedstocks often carry significant environmental burdens, and the production energy can be higher than for petrochemical polymers. Life cycle assessments (LCAs) are available in the literature, which make comparisons between biopolymers and various petrochemical polymers, however the results can be very disparate. This review has therefore been undertaken, focusing on three biodegradable biopolymers, poly(lactic acid) (PLA), poly(hydroxyalkanoates) (PHAs), and starch-based polymers, in an attempt to determine the environmental impact of each in comparison to petrochemical polymers. Reasons are explored for the discrepancies between these published LCAs. The majority of studies focused only on the consumption of non-renewable energy and global warming potential and often found these biopolymers to be superior to petrochemically derived polymers. In contrast, studies which considered other environmental impact categories as well as those which were regional or product specific often found that this conclusion could not be drawn. Despite some unfavorable results for these biopolymers, the immature nature of these technologies needs to be taken into account as future optimization and improvements in process efficiencies are expected. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions. © 2014 Elsevier Ltd.