312 resultados para spontaneous noise
em Cambridge University Engineering Department Publications Database
Resumo:
The generation of sound by turbulent boundary-layer flow at low Mach number over a rough wall is investigated by applying a theoretical model that describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of far-field radiated roughness noise. Models for the source statistics are obtained by scaling smooth-wall data by the increased skin friction velocity and boundary-layer thickness for a rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibit reasonable agreement with the predicted level. Estimates of the roughness noise for a Boeing 757 sized aircraft wing with idealized levels of surface roughness show that hi the high-frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels are observed for the roughness noise. The trailing edge noise is also enhanced by surface roughness somewhat A parametric study indicates that roughness height and roughness density significantly affect the roughness noise with roughness height having the dominant effect The roughness noise directivity varies with different levels of surface roughness. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
The generation of sound by turbulent boundary layer flow at low Mach number over a rough wall is investigated by applying the theoretical model which describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of the roughness noise radiated to far field. Empirical models for the source statistics are obtained by scaling smooth-wall data through increased skin friction velocity and boundary layer thickness for the rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet by four 1/2'' free-field condenser microphones. The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibits encouraging agreement with the predicted spectra. Also, a phased microphone array is utilized to localize the sound source, and it confirms that the rough plates generate higher source strengthes in this frequency range. A parametric study illustrates that the roughness height and roughness density significantly affect the far-field radiated roughness noise with the roughness height having the dominant effect. The estimates of the roughness noise for a Boeing 757 sized aircraft wing show that in high frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels for the roughness noise are also observed.
Resumo:
A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the measurement and simulation of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed on the rough plates which also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit satisfactory similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. However, the simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
The work in this paper forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. Here we focus on LES of the flow field near a fan blade trailing edge. The first part of the paper aims to evaluate LES suitability for predicting the near-field velocity field for a blunt NACA-0012 airfoil at moderate Reynolds numbers (2× 10 5 and 4× 10 5). Preliminary computations of turbulent mean and root-mean-square velocities, as well as energy spectra at the trailing edge, are compared with those from a recent experiment.1 The second part of the paper describes preliminary progress on an LES calculation of the fan wakes on a fan rig. 2 The CFD code uses a mixed element unstructured mesh with a median dual control volume. A wall-adapting local eddy-viscosity sub-grid scale model is employed. A very small amount of numerical dissipation is added in the numerical scheme to keep the compressible solver stable. Further results for the fan turbulentmean and RMS velocity, and especially the aeroacoustics field will be presented at a later stage. Copyright © 2008 by Qinling LI, Nigel Peake & Mark Savill.
Resumo:
This work forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. In this paper, we focus on LES calculations of noise sources on and close to a blade trailing edge. We consider two test cases; one an isolated NACA0012 airfoil in flow, and the other an industry-standard rotating fan. In the first case, turbulent mean and RMS velocities and energy spectra at different locations are compared with those from experiment. 1,2The sound generated by the unsteady pressure fluctuations on the airfoil surface and by the flow turbulence will be predicted using a Ffowcs Williams Hawkings (FW-H) surface. In the second case, unsteady flow and acoustic fields around the blade passage 3 are presented for a refined mesh, and the rotor-stator tonal noise will be predicted by using the rotor-wake mean velocity profile and the methodology described in Lloyd & Peake 4. Copyright © 2009 by Qinling Li, Nigel Peake & Mark Savill.