5 resultados para specific language impairment (SLI)
em Cambridge University Engineering Department Publications Database
Resumo:
We present the Unified Form Language (UFL), which is a domain-specific language for representing weak formulations of partial differential equations with a view to numerical approximation. Features of UFL include support for variational forms and functionals, automatic differentiation of forms and expressions, arbitrary function space hierarchies formultifield problems, general differential operators and flexible tensor algebra. With these features, UFL has been used to effortlessly express finite element methods for complex systems of partial differential equations in near-mathematical notation, resulting in compact, intuitive and readable programs. We present in this work the language and its construction. An implementation of UFL is freely available as an open-source software library. The library generates abstract syntax tree representations of variational problems, which are used by other software libraries to generate concrete low-level implementations. Some application examples are presented and libraries that support UFL are highlighted. © 2014 ACM.
Resumo:
The purpose of this study is to develop a model of cognitive impairment to help designers consider the range of issues which affect the lives of people living with such impairment. A series of interviews with experts of cognitive impairment was conducted to describe and assess the links between specific medical conditions, including learning disability, specific learning difficulties, autistic spectrum disorders, traumatic brain injury and schizophrenia, and the types of cognitive impairment associated with them. The results reveal some of the most prevalent and serious types of impairment, which - when transformed into design guidance - will help designers make mainstream products more inclusive also for people with cognitive impairment. © 2011 Springer-Verlag.
Resumo:
An increasingly common scenario in building speech synthesis and recognition systems is training on inhomogeneous data. This paper proposes a new framework for estimating hidden Markov models on data containing both multiple speakers and multiple languages. The proposed framework, speaker and language factorization, attempts to factorize speaker-/language-specific characteristics in the data and then model them using separate transforms. Language-specific factors in the data are represented by transforms based on cluster mean interpolation with cluster-dependent decision trees. Acoustic variations caused by speaker characteristics are handled by transforms based on constrained maximum-likelihood linear regression. Experimental results on statistical parametric speech synthesis show that the proposed framework enables data from multiple speakers in different languages to be used to: train a synthesis system; synthesize speech in a language using speaker characteristics estimated in a different language; and adapt to a new language. © 2012 IEEE.