94 resultados para soil cover

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the results from 10 minidrum centrifuge tests conducted at the Schofield Centre, compiled with 4 additional test results from Thusyanthan et al., 2008. All these tests were designed to measure the uplift resistance of a pipeline installed into stiff clay by trenching and backfilling, then uplifted approximately 3 months after installation. All tests were conducted at 1:30 scale using soil obtained from offshore clay samples. Experimental results show that clay blocks remained intact after 3 prototype months of consolidation, and were lifted rather than sheared during pipe pullout. The uplift resistance therefore depends on the weight of the soil cover and the shearing resistance mobilised at the softening contact points between the intact blocks and within the interstitial slurry. Slow drained pullout led to lower resistance than fast pullout, indicating that the drained response is critical for design. The varying scatter shows that peak uplift resistance is very sensitive to the arrangement of the backfill blocks when the cover and pipe diameter are comparable to the block size. Copyright © 2009 by The International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Offshore and onshore buried pipelines under high operating temperature and pressures may lead to upheaval buckling (UHB) if sufficient soil cover is not present to prevent the upward movement of the pipeline. In regions where seasonal changes involve ground soil undergoing freezing-thawing cycles, the uplift resistance from soil cover may be minimum when the soil is undergoing thawing. This paper presents the results from 2 directly-comparable minidrum centrifuge tests conducted at the Schofield Centre, University of Cambridge, to investigate the difference in uplift resistance responses between fully-saturated and thawed sandy backfill conditions. Both tests were conducted drained at 30g using an 8.6 mm diameter aluminium model pipe, corresponding to a prototype pipe diameter of 258 mm. The soil cover/pipe diameter ratio, H/D, was kept at 1. Fraction E fine silica sand was used as the backfill. Preliminary experimental results indicated that the ultimate uplift resistance of a thawing sand backfill to be lower than that of a fully saturated sand backfill. This suggests that in regions where backfill soil undergoes freeze-thaw cycles, the thawing backfill may be more critical than fully saturated backfill for uplift resistance. The 2-dimensional displacement field during the experiment was accurately measured and analysed using the Particle Image Velocimetry technique. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Buried pipelines may be subject to upheaval buckling because of thermally induced compressive stresses. As the buckling load of a strut decreases with increasing out of straightness, not only the maximum available resistance from the soil cover, but also the movement of the pipeline required to mobilize this are important factors in design. This paper will describe the results of 15 full-scale laboratory tests that have been carried out on pipeline uplift in both sandy and rocky backfills. The cover to diameter ratio ranged from 0.1 to 6. The results show that mobilization distance exhibits a linear relationship with H=D ratio and that the postpeak uplift force-displacement response can be accurately modeled using existing models. A tentative design approach is suggested; the maximum available uplift resistance may be reliably predicted from the postpeak response, and the mobilization distance may be predicted using the relationships described in this paper. © 2012 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable estimates for the maximum available uplift resistance from the backfill soil are essential to prevent upheaval buckling of buried pipelines. The current design code DNV RP F110 does not offer guidance on how to predict the uplift resistance when the cover:pipe diameter (H/D) ratio is less than 2. Hence the current industry practice is to discount the shear contribution from uplift resitance for design scenarios with H/D ratios less than 1. The necessity of this extra conservatism is assessed through a series of full-scale and centrifuge tests, 21 in total, at the Schofield Centre, University of Cambridge. Backfill types include saturated loose sand, saturated dense sand and dry gravel. Data revealed that the Vertical Slip Surface Model remains applicable for design scenarios in loose sand, dense sand and gravel with H/D ratios less than 1, and that there is no evidence that the contribution from shear should be ignored at these low H/D ratios. For uplift events in gravel, the shear component seems reliable if the cover is more than 1-2 times the average particle size (D50), and more research effort is currenty being carried out to verify this conclusion. Strain analysis from the Particle Image Velocimetry (PIV) technique proves that the Vertical Slip Surface Model is a good representation of the true uplift deformation mechanism in loose sand at H/D ratios between 0.5 and 3.5. At very low H/D ratios (H/D < 0.5), the deformation mechanism is more wedge-like, but the increased contribution from soil weight is likely to be compensated by the reduced shear contributions. Hence the design equation based on the Vertical Slip Surface Model still produces good estimates for the maximum available uplift resistance. The evolution of shear strain field from PIV analysis provides useful insight into how uplift resistance is mobilized as the uplift event progresses. Copyright 2010, Offshore Technology Conference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect ( ± 10dB) on the surface vibration response. © 2009 IOP Publishing Ltd.