5 resultados para site-specific
em Cambridge University Engineering Department Publications Database
Resumo:
The ground movements induced by the construction of supported excavation systems are generally predicted by empirical/semi-empirical methods in the design stage. However, these methods cannot account for the site-specific conditions and for information that becomes available as an excavation proceeds. A Bayesian updating methodology is proposed to update the predictions of ground movements in the later stages of excavation based on recorded deformation measurements. As an application, the proposed framework is used to predict the three-dimensional deformation shapes at four incremental excavation stages of an actual supported excavation project. © 2011 Taylor & Francis Group, London.
Resumo:
The ground movements induced by the construction of supported excavation systems are generally predicted in the design stage by empirical/semi-empirical methods. However, these methods cannot account for the site-specific conditions and for information that become available as an excavation proceeds. A Bayesian updating methodology is proposed to update the predictions of ground movements in the later stages of excavation based on recorded deformation measurements. As an application, the proposed framework is used to predict the three-dimensional deformation shapes at four incremental excavation stages of an actual supported excavation project. Copyright © ASCE 2011.
Resumo:
In geotechnical engineering, soil classification is an essential component in the design process. Field methods such as the cone penetration test (CPT) can be used as less expensive and faster alternatives to sample retrieval and testing. Unfortunately, current soil classification charts based on CPT data and laboratory measurements are too generic, and may not provide an accurate prediction of the soil type. A probabilistic approach is proposed here to update and modify soil identification charts based on site-specific CPT data. The probability that a soil is correctly classified is also estimated. The updated identification chart can be used for a more accurate prediction of the classification of the soil, and can account for prior information available before conducting the tests, site-specific data, and measurement errors. As an illustration, the proposed approach is implemented using CPT data from the Treporti Test Site (TTS) near Venice (Italy) and the National Geotechnical Experimentation Sites (NGES) at Texas A&M University. The applicability of the site-specific chart for other sites in Venice Lagoon is assessed using data from the Malamocco test site, approximately 20 km from TTS.
Resumo:
Graphene grown by Chemical Vapor Deposition (CVD) on nickel subsrate is oxidized by means of oxygen plasma and UV/Ozone treatments to introduce bandgap opening in graphene. The degree of band gap opening is proportional to the degree of oxidation on the graphene. This result is analyzed and confirmed by Scanning Tunnelling Microscopy/Spectroscopy and Raman spectroscopy measurements. Compared to conventional wet-oxidation methods, oxygen plasma and UV/Ozone treatments do not require harsh chemicals to perform, allow faster oxidation rates, and enable site-specific oxidation. These features make oxygen plasma and UV/Ozone treatments ideal candidates to be implemented in high-throughput fabrication of graphene-based microelectronics. © 2011 Materials Research Society.
Resumo:
The amount of original imaging information produced yearly during the last decade has experienced a tremendous growth in all industries due to the technological breakthroughs in digital imaging and electronic storage capabilities. This trend is affecting the construction industry as well, where digital cameras and image databases are gradually replacing traditional photography. Owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks like monitoring an activity's progress and keeping evidence of the "as built" in case any disputes arise. So far, retrieval methodologies are done manually with the user being responsible for imaging classification according to specific rules that serve a limited number of construction management tasks. New methods that, with the guidance of the user, can automatically classify and retrieve construction site images are being developed and promise to remove the heavy burden of manually indexing images. In this paper, both the existing methods and a novel image retrieval method developed by the authors for the classification and retrieval of construction site images are described and compared. Specifically a number of examples are deployed in order to present their advantages and limitations. The results from this comparison demonstrates that the content based image retrieval method developed by the authors can reduce the overall time spent for the classification and retrieval of construction images while providing the user with the flexibility to retrieve images according different classification schemes.