65 resultados para single-electron-transistor

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new solid state implementation of a quantum computer (quputer) using ballistic single electrons as flying qubits in 1D nanowires. We use a single electron pump (SEP) to prepare the initial state and a single electron transistor (SET) to measure the final state. Single qubit gates are implemented using quantum dots as phase shifters and electron waveguide couplers as beam splitters. A Coulomb coupler acts as a 2-qubit gate, using a mutual phase modulation effect. Since the electron phase coherence length in GaAs/AlGaAs heterostructures is of the order of 30$\mu$m, several gates (tens) can be implemented before the system decoheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single electron transistors are fabricated on single Si nanochains, synthesised by thermal evaporation of SiO solid sources. The nanochains consist of one-dimensional arrays of ~10nm Si nanocrystals, separated by SiO 2 regions. At 300 K, strong Coulomb staircases are seen in the drain-source current-voltage (I ds-V ds) characteristics, and single-electron oscillations are seen in the drain-source current-gate voltage (I ds-V ds) characteristics. From 300-20 K, a large increase in the Coulomb blockade region is observed. The characteristics are explained using singleelectron Monte Carlo simulation, where an inhomogeneous multiple tunnel junction represents a nanochain. Any reduction in capacitance at a nanocrystal well within the nanochain creates a conduction " bottleneck", suppressing current at low voltage and improving the Coulomb staircase. The single-electron charging energy at such an island can be very high, ~20k BT at 300 K. © 2012 The Japan Society of Applied Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High frequency Rayleigh and Sezawa modes propagating in the ZnO/GaAs system capable of operating immersed in liquid helium have been engineered. In the case of the Rayleigh mode, the strong attenuation produced by the liquid is counteracted by the strengthening of the mode induced by the ZnO. However, in the case of the Sezawa modes, the attenuation is strongly reduced taking advantage of the depth profile of their acoustic Poynting vectors, that extend deeper into the layered system, reducing the energy radiated into the fluid. Thus, both tailored modes will be suitable for acoustically-driven single-electron and single-photon devices in ZnO-coated GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical detection of solid-state charge qubits requires ultrasensitive charge measurement, typically using a quantum point contact or single-electron-transistor, which imposes strict limits on operating temperature, voltage and current. A conventional FET offers relaxed operating conditions, but the back-action of the channel charge is a problem for such small quantum systems. Here, we discuss the use of a percolation transistor as a measurement device, with regard to charge sensing and backaction. The transistor is based on a 10nm thick SOI channel layer and is designed to measure the displacement of trapped charges in a nearby dielectric. At cryogenic temperatures, the trapped charges result in strong disorder in the channel layer, so that current is constrained to a percolation pathway in sub-threshold conditions. A microwave driven spatial Rabi oscillation of the trapped charge causes a change in the percolation pathway, which results in a measurable change in channel current. © The Electrochemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a single optical photon source for quantum cryptography based on the acousto-electric effect. Surface acoustic waves (SAWs) propagating through a quasi-one-dimensional channel have been shown to produce packets of electrons which reside in the SAW minima and travel at the velocity of sound. In our scheme these electron packets are injected into a p-type region, resulting in photon emission. Since the number of electrons in each packet can be controlled down to a single electron, a stream of single (or N) photon states, with a creation time strongly correlated with the driving acoustic field, should be generated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a single optical photon source for quantum cryptography based on the acoustoelectric effect. Surface acoustic waves (SAWs) propagating through a quasi-one-dimensional channel have been shown to produce packets of electrons that reside in the SAW minima and travel at the velocity of sound. In our scheme, the electron packets are injected into a p-type region, resulting in photon emission. Since the number of electrons in each packet can be controlled down to a single electron, a stream of single- (or N-) photon states, with a creation time strongly correlated with the driving acoustic field, should be generated. ©2000 The American Physical Society.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A novel device for detection of single photons based on a GaAs/AlGaAs modulation doped field effect transistor (MODFET) which does not rely on avalanche processes is proposed. The optimal channel electron densities and quantum dot parameters for detection of single photons are discussed.