447 resultados para silicon compounds

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we report about the electrical properties of La 0.7Ca0.3MnO3 compounds substituted by copper on the manganese site and/or deliberately contaminated by SiO2 in the reactant mixture. Several phenomena have been observed and discussed. SiO2 addition leads to the formation of an apatite-like secondary phase that affects the electrical conduction through the percolation of the charge carriers. On the other hand, depending on the relative amounts of copper and silicon, the temperature dependence of the electrical resistivity can be noticeably modified: our results enable us to compare the effects of crystallographic vacancies on the A and B sites of the perovskite with the influence of the copper ions substituted on the manganese site. The most original result occurs for the compounds with a small ratio Si/Cu, which display double-peaked resistivity vs. temperature curves. © 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key technologies to evolve in the displays market in recent years is liquid crystal over silicon (LCOS) microdisplays. Traditional LCOS devices and applications such as rear projection televisions, have been based on intensity modulation electro-optical effects, however, recent developments have shown that multi-level phase modulation from these devices is extremely sought after for applications such as holographic projectors, optical correlators and adaptive optics. Here, we propose alternative device geometry based on the flexoelectric-optic effect in a chiral nematic liquid crystal. This device is capable of delivering a multilevel phase shift at response times less than 100 microsec which has been verified by phase shift interferometry using an LCOS test device. The flexoelectric on silicon device, due to its remarkable characteristics, enables the next generation of holographic devices to be realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by recent experimental work, we use first-principles density functional theory methods to conduct an extensive search for low enthalpy structures of C$_6$Ca under pressure. As well as a range of buckled structures, which are energetically competitive over an intermediate range of pressures, we show that the high pressure system ($\gtrsim 18$ GPa) is unstable towards the formation of a novel class of layered structures, with the most stable compound involving carbon sheets containing five- and eight-membered rings. As well as discussing the energetics of the different classes of low enthalpy structures, we comment on the electronic structure of the high pressure compound and its implications for superconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the fabrication and electrical characterization of high tuning range AlSi RF MEMS capacitors. We present experimental results obtained by a surface micromachining process that uses dry etching of sacrificial amorphous silicon to release Al-1%Si membranes and has a low thermal budget (<450 °C) being compatible with CMOS post-processing. The proposed silicon sacrificial layer dry etching (SSLDE) process is able to provide very high Si etch rates (3-15 μm/min, depending on process parameters) with high Si: SiO2 selectivity (>10,000:1). Single- and double-air-gap MEMS capacitors, as well as some dedicated test structures needed to calibrate the electro-mechanical parameters and explore the reliability of the proposed technology, have been fabricated with the new process. S-parameter measurements from 100 MHz up to 2 GHz have shown a capacitance tuning range higher than 100% with the double-air-gap architecture. The tuning range can be enlarged with a proper DC electrical bias of the capacitor electrodes. Finally, the reported results make the proposed MEMS tuneable capacitor a good candidate for above-IC integration in communications applications. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. © 2010 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical efficiency of GaN-based multiple quantum well (MQW) and light emitting diode (LED) structures grown on Si(111) substrates by metal-organic vapor phase epitaxy was measured and compared with equivalent structures on sapphire. The crystalline quality of the LED structures was comprehensively characterized using x-ray diffraction, atomic force microscopy, and plan-view transmission electron microscopy. A room temperature photoluminescence (PL) internal quantum efficiency (IQE) as high as 58% has been achieved in an InGaN/GaN MQW on Si, emitting at 460 nm. This is the highest reported PL-IQE of a c-plane GaN-based MQW on Si, and the radiative efficiency of this sample compares well with similar structures grown on sapphire. Processed LED devices on Si also show good electroluminescence (EL) performance, including a forward bias voltage of ∼3.5 V at 20 mA and a light output power of 1 mW at 45 mA from a 500 ×500 μm2 planar device without the use of any additional techniques to enhance the output coupling. The extraction efficiency of the LED devices was calculated, and the EL-IQE was then estimated to have a maximum value of 33% at a current density of 4 A cm-2, dropping to 30% at a current density of 40 A cm-2 for a planar LED device on Si emitting at 455 nm. The EL-IQE was clearly observed to increase as the structural quality of the material increased for devices on both sapphire and Si substrates. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid crystal on silicon (LCOS) is one of the most exciting technologies, combining the optical modulation characteristics of liquid crystals with the power and compactness of a silicon backplane. The objective of our work is to improve cell assembly and inspection methods by introducing new equipment for automated assembly and by using an optical inspection microscope. A Suss-Micro'Tec Universal device bonder is used for precision assembly and device packaging and an Olympus BX51 high resolution microscope is employed for device inspection. ©2009 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the deposition, annealing and characterisation of semi-insulating oxygen-doped silicon films at temperatures compatible with polysilicon circuitry on glass. The semi-insulating layers are deposited by the plasma enhanced chemical vapour deposition technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures at a temperature of 350 °C. The as-deposited films are then furnace annealed at 600 °C which is the maximum process temperature. Raman analysis shows the as-deposited and annealed films to be completely amorphous. The most important deposition variable is the N2O SiH4 gas ratio. By varying the N2O SiH4 ratio the conductivity of the annealed films can be accurately controlled, for the first time, down to a minimum of ≈10-7Ω-1cm-1 where they exhibit a T -1 4 temperature dependence indicative of a hopping conduction mechanism. Helium dilution of the reactant gases is shown to improve both film uniformity and reproducibility. A model for the microstructure of these semi-insulating amorphous oxygen-doped silicon films is proposed to explain the observed physical and electrical properties. © 1995.