4 resultados para semiheavy hen

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amyloid nanofibers derived from hen egg white lysozyme were processed into macroscopic fibers in a wet-spinning process based on interfacial polyion complexation using a polyanionic polysaccharide as cross-linker. As a result of their amyloid nanostructure, the hierarchically self-assembled protein fibers have a stiffness of up to 14 GPa and a tensile strength of up to 326 MPa. Fine-tuning of the polyelectrolytic interactions via pH allows to trigger the release of small molecules, as demonstrated with riboflavin-5'-phophate. The amyloid fibrils, highly oriented within the gellan gum matrix, were mineralized with calcium phosphate, mimicking the fibrolamellar structure of bone. The formed mineral crystals are highly oriented along the nanofibers, thus resulting in a 9-fold increase in fiber stiffness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Reynolds number influence on turbulent blocking effects by a rigid plane boundary is studied using direct numerical simulation (DNS). A new forcing method using 'simple model eddies' (Townsend 1976) for DNS of stationary homogeneous isotropic turbulence is proposed. A force field is obtained in real space by sprinkling many space-filling 'simple model eddies' whose centers are randomly but uniformly distributed in space and whose axes of rotation are random. The method is applied to a shear-free turbulent boundary layer over a rigid plane boundary and the blocking effects are investigated. The results show that stationary homogeneous isotropic turbulence is generated in real space using the present method. By using different model eddies with different sizes and rotation speeds, we could change the turbulence properties such as the integral and micro scales, the turbulent Reynolds number and the isotropy of turbulence. Turbulence intensities near the wall showed good agreements with the previous measurement and the linear analysis based on a rapid distortion theory (RDT). The splat effect (i.e., turbulence intensities of the components parallel to the boundary are amplified) occurs near the boundary and the viscous effect prohibits the splat effect at the quasi steady state at low Reynolds number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prandtl's secondary mean motions of the second kind near an undulating surface were explained in terms of turbulent blocking effect and kinematic boundary conditions at the surface, and its order of magnitude was estimated. Isotropic turbulence is distorted by the undulating surface of wavelength λ and amplitude h with a low slope, so that h « λ. The prime mechanism for generating the mean flow is that the far-field Isotropic turbulence is distorted by the non-local blocking effect of the surface to become anisotropic axisymmetric turbulence near the surface with principal axis that is not aligned with the local curvature of the undulation. Then the local analysis can be applied and the mechanism is similar to the mean flow generation mechanism for homogeneous axisymmetric turbulence over a planer surface, i.e. gradients of the Reynolds stress caused by the turbulent blocking effect generate the mean motions. The results from this simple analysis are consistent with previous exact analysis in which the effects of curvature are strictly taken into account. The results also qualitatively agree with flow visualization over an undulating surface in a mixing-box.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Reynolds number influence on turbulent blocking effects by a rigid plane boundary is studied using direct numerical simulation (DNS). A new forcing method proposed in the second report using Townsend's "simple model eddies" for DNS was extended to generate axisymmetric anisotropic turbulence. A force field is obtained in real space by sprinkling many space-filling "simple model eddies" whose centers are randomly but uniformly distributed in space. The axes of rotation are controlled in this study to generate axisymmetric anisotropic turbulence. The method is applied to a shear-free turbulent boundary layer over a rigid plane boundary and the blocking effects for anisotropic turbulence are investigated. The results show that stationary axisymmetric anisotropic turbulence is generated using the present method. Turbulence intensities near the wall showed good agreements with the rapid distortion theory (RDT) for small t (t ≪ TL), where TL. is the eddy turnover time. The splat effect (i. e. turbulence intensities of the components parallel to the surface are amplified) occurs near the boundary and the viscous effect attenuates the splat effect at the quasi steady state at low Reynolds number as for Isotropic turbulence. Prandtl's secondary flow of the second kind does not occur for low Reynolds number flows, which qualitatively agrees with previous observetion in a mixing-box.