107 resultados para semiconductor materials

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid and effective thermal processing methods using electron beams are described in this paper. Heating times ranging from a fraction of a second to several seconds and temperatures up to 1400°C are attainable. Applications such as the annealing of ion implanted material, both without significant dopant diffusion and with highly controlled diffusion of impurities, are described. The technique has been used successfully to activate source/drain regions for fine geometry NMOS transistors. It is shown that electron beams can produce localised heating of semiconductor substrates and a resolution of approximately 1 μm has been achieved. Electron beam heating has been applied to improving the crystalline quality of silicon-on sapphire used in CMOS device fabrication. Silicon layers with defect levels approaching bulk material have been obtained. Finally, the combination of isothermal and selective annealing is shown to have application in recrystallisation of polysilicon films on an insulating layer. The approach provides the opportunity of producing a silicon-on-insulator substrate with improved crystalline quality compared to silicon-on-sapphire at a potentially lower cost. It is suggested that rapid heating methods are expected to provide a real alternative to conventional furnace processing of semiconductor devices in the development of fabrication technology. © 1984 Benn electronics Publications Ltd, Luton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the advances that flash lamp annealing brings to the processing of the most frequently used semiconductor materials, namely silicon and silicon carbide, thus enabling the fabrication of novel microelectronic structures and materials. The paper describes how such developments can translate into important practical applications leading to a wide range of technological benefits. Opportunities in ultra-shallow junction formation, heteroepitaxial growth of thin films of cubic silicon carbide on silicon, and crystallization of amorphous silicon films, along with the technical reasons for using flash lamp annealing are discussed in the context of state-of-the-art materials processing. © 2005 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a clear and increasing interest in short time annealing processing far below one second, i.e. the lower limit of Rapid Thermal Processing (RTP) called spike annealing. This was driven by the need of suppressing the so-called Transient Enhanced Diffusion in advanced boronimplanted shallow pn-junctions in silicon technology. Meanwhile the interest in flash lamp annealing (FLA) in the millisecond range spread out into other fields related to silicon technology and beyond. This paper reports on recent experiments regarding shallow junction engineering in germanium, annealing of ITO layers on glass and plastic foil to form an conductive layer as well as investigations which we did during the last years in the field of wide band gap semiconductor materials (SiC, ZnO). A more common feature evolving from our work was related to the modeling of wafer stress during millisecond thermal processing with flash lamps. Finally recent achievements in the field of silicon-based light emission basing on Metal-Oxide-Semiconductor Light Emitting Devices will be reported. © 2007 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A process to fabricate solution-processable thin-film transistors (TFTs) with a one-step self-aligned definition of the dimensions in all functional layers is demonstrated. The TFT-channel, semiconductor materials, and effective gate dimention of different layers are determined by a one-step imprint process and the subsequent pattern transfer without the need for multiple patterning and mask alignment. The process is compatible with fabrication of large-scale circuits. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent development of solution processable organic semiconductors delineates the emergence of a new generation of air-stable, high performance p- and n-type materials. This makes it indeed possible for printed organic complementary circuits (CMOS) to be used in real applications. The main technical bottleneck for organic CMOS to be adopted as the next generation organic integrated circuit is how to deposit and pattern both p- and n-type semiconductor materials with high resolutions at the same time. It represents a significant technical challenge, especially if it can be done for multiple layers without mask alignment. In this paper, we propose a one-step self-aligned fabrication process which allows the deposition and high resolution patterning of functional layers for both p- and n-channel thin film transistors (TFTs) simultaneously. All the dimensional information of the device components is featured on a single imprinting stamp, and the TFT-channel geometry, electrodes with different work functions, p- and n-type semiconductors and effective gate dimensions can all be accurately defined by one-step imprinting and the subsequent pattern transfer process. As an example, we have demonstrated an organic complementary inverter fabricated by 3D imprinting in combination with inkjet printing and the measured electrical characteristics have validated the feasibility of the novel technique. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-electro-mechanical systems, MEMS, is a rapidly growing interdisciplinary technology within the general field of Micro-Systems Technology which deals with the design and manufacture of miniaturised machines with major dimensions at the scale of tens, to perhaps hundreds, of microns. Because they depend on the cube of a representative dimension, component masses and inertias rapidly become small as size decreases whereas surface and tribological effects, which often depend on area, become increasingly important. Although MEMS components and their areas of contact are small, tribological conditions, measured by contact pressures or acceptable wear rates, are demanding and technical and commercial success will require careful measurement and precise control of surface topography and properties. Fabrication of small numbers of MEMS devices designed to test potential material combinations can be prohibitively expensive and thus there is a need for small scale test facilities which mimic the contact conditions within a micro-machine without themselves requiring processing within a full semiconductor foundry. The talk will illustrate some initial experimental results from a small-scale experimental device which meets these requirements, examining in particular the performance of Diamond-Like-Carbon coatings on a silicon substrate. Copyright © 2005 by ASME.