13 resultados para secure protocal
em Cambridge University Engineering Department Publications Database
Resumo:
This paper proposes a high current impedance matching method for narrowband power-line communication (NPLC) systems. The impedance of the power-line channel is time and location variant; therefore, coupling circuitry and the channel are not usually matched. This not only results in poor signal integrity at the receiving end, but also leads to a higher transmission power requirement to secure the communication process. To offset this negative effect, a high-current adaptive impedance circuit to enable impedance matching in power-line networks is reported. The approach taken is to match the channel impedance of N-PLC systems is based on the General Impedance Converter (GIC). In order to achieve high current a special coupler in which the inductive impedance can be altered by adjusting a microcontroller controlled digital resistor is demonstrated. It is shown that the coupler works well with heavy load current in power line networks. It works in both low and high transmitting current modes, a current as high as 760 mA has been obtained. Besides, compared with other adaptive impedance couplers, the advantages include higher matching resolution and a simple control interface. Experimental results are presented to demonstrate the operation of the coupler. © 2011 IEEE.
Resumo:
OVERVIEW: The importance of the chief technology officer role is widely accepted, particularly in today's turbulent, global conditions. However, not enough is known about the key activities of CTOs or the factors that influence their priorities. Thirty in-depth interviews conducted with the CTOs in global firms identified key activities: aligning technology and corporate strategy and business models, determining technology entry and exit points, and preparing business cases to secure funding for technology development. The research also showed that priority areas for CTOs are related to technology transition points-major contextual and business discontinuities that impact the focus of the CTO. We conclude that the determination of priorities at these technology transition points is highly idiosyncratic and closely related to whether the CTO functions more or less strategically.
Resumo:
Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.
Resumo:
Narrowband Power-line Communication (NPLC) technology uses a narrow bandwidth to transmit information. Its major applications include control, smart home systems and security. This paper proposes a power optimised NPLC system to minimise its systemic power consumption without compromising its communication ability. By using the proposed Smart Energy Conservation Layer which reads the signal strength from the PLC channel, a power optimised system is achieved to provide the essential transmitting power to secure the communications. Compared to commercial systems, the potential power saving could be up to 99% in a household environment, as demonstrated by the experimental results. © 2013 IEEE.
Resumo:
We analyse the finite-size security of the efficient Bennett-Brassard 1984 protocol implemented with decoy states and apply the results to a gigahertz-clocked quantum key distribution system. Despite the enhanced security level, the obtained secure key rates are the highest reported so far at all fibre distances.
Resumo:
We report the operation of a gigahertz clocked quantum key distribution system featuring high composable and quantifiable security while maintaining more than 1 Mbit/s secure key rate over a 50 km quantum channel. © OSA 2013.
Resumo:
A multi-objective design optimisation study has been carried out with the objectives to improve the overall efficiency of the device and to reduce the fuel consumption for the proposed micro-scale combustor design configuration. In a previous study we identified the topology of the combustion chamber that produced improved behaviour of the device in terms of the above design criteria. We now extend our design approach, and we propose a new configuration by the addition of a micro-cooling channel that will improve the thermal behaviour of the design as previously suggested in literature. Our initial numerical results revealed an improvement of 2.6% in the combustion efficiency when we applied the micro-cooling channel to an optimum design configuration we identified from our earlier multi-objective optimisation study, and under the same operating conditions. The computational modelling of the combustion process is implemented in the commercial computational fluid dynamics package ANSYS-CFX using Finite Rate Chemistry and a single step hydrogen-air reaction. With this model we try to balance good accuracy of the combustion solution and at the same time practicality within the context of an optimisation process. The whole design system comprises also the ANSYS-ICEM CFD package for the automatic geometry and mesh generation and the Multi-Objective Tabu Search algorithm for the design space exploration. We model the design problem with 5 geometrical parameters and 3 operational parameters subject to 5 design constraints that secure practicality and feasibility of the new optimum design configurations. The final results demonstrate the reliability and efficiency of the developed computational design system and most importantly we assess the practicality and manufacturability of the revealed optimum design configurations of micro-combustor devices. Copyright © 2013 by ASME.
Resumo:
We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances. © 2014 AIP Publishing LLC.
Resumo:
We demonstrate quantum key distribution (QKD) with bidirectional 10 Gb/s classical data channels in a single fiber using dense wavelength division multiplexing. Record secure key rates of 2.38 Mbps and fiber distances up to 70km are achieved. Data channels are simultaneously monitored for error-free operation. The robustness of QKD is further demonstrated with a secure key rate of 445 kbps over 25km, obtained in the presence of data lasers launching conventional 0 dBm power. We discuss the fundamental limit for the QKD performance in the multiplexing environment. © 2014 AIP Publishing LLC.
Resumo:
The materials information requirements of the aerospace sector are considered, specifically 'consolidation' (management of raw test data), 'analysis' (investigation of material trade-offs) and 'dissemination (secure distribution of data throughout an organization). An information architecture that satisfies the complex requirements of the aerospace materials industry is discussed and a case-study is presented. © 2003 by Granta Design Limited. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Although cementation is a widely recognized solidification/ stabilization process for immobilisation of Intermediate Level Radioactive Waste (ILRW), the low resistance to hyperalkaline pore waters compromises the effectiveness of the process when Portland Cement (PC) is employed. Moreover the manufacture of PC is responsible for significant CO2 emissions. In this context, low pH cements are environmentally more suitable and have emerged as a potential alternative for obtaining secure waste forms. This paper summarises the achievements on development of low-pH cements and the challenges of using these new materials for the ILRW immobilisation. The performance of waste forms is also discussed in terms of radionuclides release. Reactive magnesium oxide and magnesium phosphate cements are emphasised as they feature important advantages such as consumption of available constituents for controlling acid-base reactions, reduced permeability and higher density. Additionally, in order to identify new opportunities for study, the long-term modelling approach is also briefly discussed. Copyright © 2013 by ASME.