6 resultados para rural-urban comparison

em Cambridge University Engineering Department Publications Database


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a hospital environment that demands a careful balance between commercial and clinical interests, the extent to which physicians are involved in hospital leadership varies greatly. This paper assesses the influence of the extent of this involvement on staff-to-patient ratios. Using data gathered from 604 hospitals across Germany, this study evidences the positive relationship between a full-time medical director (MD) or heavily involved part-time MD and a higher staff-to-patient ratio. The data allows us to control for a range of confounding variables, such as size, rural/urban location, ownership structure, and case-mix. The results contribute to the sparse body of empirical research on the effect of clinical leadership on organizational outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observation shows that the watershed-scale models in common use in the United States (US) differ from those used in the European Union (EU). The question arises whether the difference in model use is due to familiarity or necessity. Do conditions in each continent require the use of unique watershed-scale models, or are models sufficiently customizable that independent development of models that serve the same purpose (e.g., continuous/event- based, lumped/distributed, field-Awatershed-scale) is unnecessary? This paper explores this question through the application of two continuous, semi-distributed, watershed-scale models (HSPF and HBV-INCA) to a rural catchment in southern England. The Hydrological Simulation Program-Fortran (HSPF) model is in wide use in the United States. The Integrated Catchments (INCA) model has been used extensively in Europe, and particularly in England. The results of simulation from both models are presented herein. Both models performed adequately according to the criteria set for them. This suggests that there was not a necessity to have alternative, yet similar, models. This partially supports a general conclusion that resources should be devoted towards training in the use of existing models rather than development of new models that serve a similar purpose to existing models. A further comparison of water quality predictions from both models may alter this conclusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BIPV (building integrated photovoltaics) has progressed in the past years and become an element to be considered in city planning. BIPV has significant influence on microclimate in urban environments and the performance of BIPV is also affected by urban climate. The thermal model and electrical performance model of ventilated BIPV are combined to predict PV temperature and PV power output in Tianjin, China. Then, by using dynamic building energy model, the building cooling load for installing BIPV is calculated. A multi-layer model AUSSSM of urban canopy layer is used to assess the effect of BIPV on the Urban Heat Island (UHI). The simulation results show that in comparison with the conventional roof, the total building cooling load with ventilation PV roof may be decreased by 10%. The UHI effect after using BIPV relies on the surface absorptivity of original building. In this case, the daily total PV electricity output in urban areas may be reduced by 13% compared with the suburban areas due to UHI and solar radiation attenuation because of urban air pollution. The calculation results reveal that it is necessary to pay attention to and further analyze interactions between BIPV and microdimate in urban environments to decrease urban pollution, improve BIPV performance and reduce cooling load. Copyright © 2006 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally recognized that BIPV (building integrated photovoltaics) has the potential to become a major source of renewable energy in the urban environment. The actual output of a PV module in the field is a function of orientation, total irradiance, spectral irradiance, wind speed, air temperature, soiling and various system-related losses. In urban areas, the attenuation of solar radiation due to air pollution is obvious, and the solar spectral content subsequently changes. The urban air temperature is higher than that in the surrounding countryside, and the wind speed in urban areas is usually less than that in rural areas. Three different models of PV power are used to investigate the effect of urban climate on PV performance. The results show that the dimming of solar radiation in the urban environment is the main reason for the decrease of PV module output using the climatic data of urban and rural sites in Mexico City for year 2003. The urban PV conversion efficiency is higher than that of the rural PV system because the PV module temperature in the urban areas is slightly lower than that in the rural areas in the case. The DC power output of PV seems to be underestimated if the spectral response of PV in the urban environment is not taken into account based on the urban hourly meteorological data of Sao Paulo for year 2004. © 2006 Elsevier Ltd. All rights reserved.