16 resultados para risk assessment
em Cambridge University Engineering Department Publications Database
Resumo:
Water supply and wastewater control are critical elements of society's infrastructure. The objective of this study will be to provide a generic risk assessment tool to provide municipalities and the nation as a whole with a quantifiable assessment of their vulnerability to water infrastructure threats. The approach will prioritize countermeasures and identify where research and development is required to further minimize risk. This paper outlines the current context, primary concerns and state-of-the art in critical infrastructure risk management for the water sector and proposes a novel approach to resolve existing questions in the field. The proposed approach is based on a modular framework that derives a quantitative risk index for varied domains of interest. The approach methodology is scaleable and based on formal definitions of event probability and severity. The framework is equally applicable to natural and human-induced hazard types and can be used for analysis of compound risk events.
Resumo:
This article explores risk management in global industrial investment by identifying linkages and gaps between theories and practices. It identifies opportunities for further development of the field. Three related bodies of literature have been reviewed: risk management, global manufacturing and investment. The review suggests that risk management in global manufacturing is overlooked in the literature; that existing theoretical risk management processes are not well developed in the global manufacturing context and that the investment literature applies mainly to financial risk assessment rather than investment risk management structures. Further, there appears to be a serious lack of systematic industrial risk management in investment decision making. This article highlights the opportunities to deploy current good practices more effectively as well as the need to develop more robust theories of industrial investment risk management. The approach adopted to investigate this multidisciplinary topic included a historical review of literature to understand the diverse background of theoretical development. A case study research approach was adopted to collect data, involving four global manufacturing companies and one risk management advisory company to observe the patterns and rationale of current practices. Supporting arguments from secondary data sources reinforced the findings. The research focuses risk management in global industrial investment. It links theories with practice to understand the existing knowledge gap and proposes key research themes for further research. © 2013 Macmillan Publishers Ltd. 1460-3799 Risk Management.
Resumo:
In recent years, the healthcare sector has adopted the use of operational risk assessment tools to help understand the systems issues that lead to patient safety incidents. But although these problem-focused tools have improved the ability of healthcare organizations to identify hazards, they have not translated into measurable improvements in patient safety. One possible reason for this is a lack of support for the solution-focused process of risk control. This article describes a content analysis of the risk management strategies, policies, and procedures at all acute (i.e., hospital), mental health, and ambulance trusts (health service organizations) in the East of England area of the British National Health Service. The primary goal was to determine what organizational-level guidance exists to support risk control practice. A secondary goal was to examine the risk evaluation guidance provided by these trusts. With regard to risk control, we found an almost complete lack of useful guidance to promote good practice. With regard to risk evaluation, the trusts relied exclusively on risk matrices. A number of weaknesses were found in the use of this tool, especially related to the guidance for scoring an event's likelihood. We make a number of recommendations to address these concerns. The guidance assessed provides insufficient support for risk control and risk evaluation. This may present a significant barrier to the success of risk management approaches in improving patient safety. © 2013 Society for Risk Analysis.
Resumo:
The assessment of settlement induced damage on buildings during the preliminary phase of tunnel excavation projects, is nowadays receiving greater attention. Analyses at different levels of detail are performed on the surface building in proximity to the tunnel, to evaluate the risk of structural damage and the need of mitigation measures. In this paper, the possibility to define a correlation between the main parameters that influence the structural response to settlement and the potential damage is investigated through numerical analysis. The adopted 3D finite element model allows to take into account important features that are neglected in more simplified approaches, like the soil-structure interaction, the nonlinear behaviour of the building, the three dimensional effect of the tunnelling induced settlement trough and the influence of openings in the structure. Aim of this approach is the development of an improved classification system taking into account the intrinsic vulnerability of the structure, which could have a relevant effect on the final damage assessment. Parametric analyses are performed, focusing on the effect of the orientation and the position of the structure with respect to the tunnel. The obtained results in terms of damage are compared with the Building Risk Assessment (BRA) procedure. This method was developed by Geodata Engineering (GDE) on the basis of empirical observations and building monitoring and applied during the construction of different metro lines in urban environment. The comparison shows a substantial agreement between the two procedures on the influence of the analysed parameters. The finite element analyses suggest a refinement of the BRA procedure for pure sagging conditions.
Resumo:
Excavation works in urban areas require a preliminary risk damage assessment. In historical cities, the prediction of building response to settlements is necessary to reduce the risk of damage of the architectural heritage. The current method used to predict the building damage due to ground deformations is the Limiting Tensile Strain Method (LTSM). In this approach the building is modelled as an elastic beam subjected to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. These assumptions can lead to a non realistic evaluation of the damage. In this paper, the possibility to apply a settlement risk assessment derived from the seismic vulnerability approach is considered. The parameters that influence the structural response to settlements can be defined through numerical analyses which take into account the nonlinear behaviour of masonry and the soil-structure interaction. The effects of factors like material quality, geometry of the structure, amount of openings, type of foundation or the actual state of preservation can be included in a global vulnerability index, which should indicate the building susceptibility to damage by differential settlements of a given magnitude. Vulnerability curves will represent the expected damage of each vulnerability class of building as a function of the settlement.
Resumo:
The heterogeneous nature of the subsurface and associated DNAPL morphologies often poses the greatest limitation to source zone clean-up strategies. Hence, detailed site characterisation techniques are required. The data presented in this paper has been collected from a series of laboratory 2-D tank experiments and numerical simulations of Partitioning Interwell Tracer Tests (PITT) in a wide range of aquifer conditions and DNAPL morphologies. Alternative uses of tracer breakthrough data have been developed In order to characterise the mass flux generated from the DNAPL source. By combining the laboratory and numerical data, a relationship between normalised mass flux and tracer-based average source zone DNAPL saturation has been established. Knowledge of such a relationship allows remediation targets to be identified, clean-up efficiencies to be evaluated, and increases the accuracy of any risk assessment.
Resumo:
The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and "local" tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event. © 2006 Author(s). This work is licensed under a Creative Commons License.
Resumo:
Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 ± 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 ± 0:79 mm. © 2013 SPIE.
Resumo:
This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing. One of the consequences is a greater attention to the risk of damage on existing structures. Thus, the assessment of potential damage of surface buildings has become an essential stage in the excavation projects in urban areas (Chapter 1). The current damage risk assessment procedure is based on strong simplifications, which not always lead to conservative results. Object of this thesis is the development of an improved damage classification system, which takes into account the parameters influencing the structural response to settlement, like the non-linear behaviour of masonry and the soil-structure interaction. The methodology used in this research is based on experimental and numerical modelling. The design and execution of an experimental benchmark test representative of the problem allows to identify the principal factors and mechanisms involved. The numerical simulations enable to generalize the results to a broader range of physical scenarios. The methodological choice is based on a critical review of the currently available procedures for the assessment of settlement-induced building damage (Chapter 2). A new experimental test on a 1/10th masonry façade with a rubber base interface is specifically designed to investigate the effect of soil-structure interaction on the tunnelling-induced damage (Chapter 3). The experimental results are used to validate a 2D semi-coupled finite element model for the simulation of the structural response (Chapter 4). The numerical approach, which includes a continuum cracking model for the masonry and a non-linear interface to simulate the soil-structure interaction, is then used to perform a sensitivity study on the effect of openings, material properties, initial damage, initial conditions, normal and shear behaviour of the base interface and applied settlement profile (Chapter 5). The results assess quantitatively the major role played by the normal stiffness of the soil-structure interaction and by the material parameters defining the quasi-brittle masonry behaviour. The limitation of the 2D modelling approach in simulating the progressive 3D displacement field induced by the excavation and the consequent torsional response of the building are overcome by the development of a 3D coupled model of building, foundation, soil and tunnel (Chapter 6). Following the same method applied to the 2D semi-coupled approach, the 3D model is validated through comparison with the monitoring data of a literature case study. The model is then used to carry out a series of parametric analyses on geometrical factors: the aspect ratio of horizontal building dimensions with respect to the tunnel axis direction, the presence of adjacent structures and the position and alignment of the building with respect to the excavation (Chapter 7). The results show the governing effect of the 3D building response, proving the relevance of 3D modelling. Finally, the results from the 2D and 3D parametric analyses are used to set the framework of an overall damage model which correlates the analysed structural features with the risk for the building of being damaged by a certain settlement (Chapter 8). This research therefore provides an increased experimental and numerical understanding of the building response to excavation-induced settlements, and sets the basis for an operational tool for the risk assessment of structural damage (Chapter 9).