13 resultados para retrofit

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drive to reduce carbon emissions from domestic housing has led to a recent shift of focus from new-­‐build to retrofit. However there are two significant differences. Firstly more work is needed to retrofit existing housing to the same energy efficiency standards as new-­‐build. Secondly the remaining length of service life is potentially shorter. This implies that the capital expenditure – both financial and carbon -­‐ of retrofit may be disproportionate to the savings gained over the remaining life. However the Government’s definition of low and zero carbon continues to exclude the capital (embodied) carbon costs of construction, which has resulted in a lack of data for comparison. The paper addresses this gap by reporting the embodied carbon costs of retrofitting four individual pilot properties in Rampton Drift, part of an Eco-­‐Town Demonstrator Project in Cambridgeshire. Through collecting details of the materials used and their journeys from manufacturer to site, the paper conducts a ‘cradle-­‐to-­‐gate’ life cycle carbon assessment for each property. The embodied carbon figures are calculated using a software tool being developed by the Centre for Sustainable Development at the University of Cambridge. The key aims are to assess the real embodied carbon costs of retrofit of domestic properties, and to test the new tool; it is hoped that the methodology, the tool and the specific findings will be transferable to other projects. Initial changes in operational energy as a result of the retrofit works will be reported and compared with the embodied carbon costs when presenting this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is part of a larger PhD research project examining the apparent conflict in UK planning between energy efficiency and conservation for the retrofit of the thermal envelope of the existing building stock. Review of the literature shows that the UK will not meet its 2050 emission reduction target without substantial improvement to the energy performance of the thermal envelope of the existing building stock and that significantly, 40% of the existing stock has heritage status and may be exempted from Building Regulations. A review of UK policy and legislation shows that there are clear national priorities towards reducing emissions and addressing climate change, yet also shows a movement towards local decision making and control. This paper compares the current status of thirteen London Boroughs in respect to their position on thermal envelope retrofit for heritage and traditionally constructed buildings. Data collection is through ongoing surveys and interviews that compare statistical data, planning policies, sustainability and environmental priorities, and Officer decision-making. This paper finds that there is a lack of consistency in application of planning policy across Boroughs and suggests that this is a barrier to the up-take of energy efficient retrofit. Various recommendations are suggested at both national and local level which could help UK planning and planning officers deliver more energy efficient heritage retrofits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Housing stock models can be useful tools in helping to assess the environmental and socio-economic impacts of retrofits to residential buildings; however, existing housing stock models are not able to quantify the uncertainties that arise in the modelling process from various sources, thus limiting the role that they can play in helping decision makers. This paper examines the different sources of uncertainty involved in housing stock models and proposes a framework for handling these uncertainties. This framework involves integrating probabilistic sensitivity analysis with a Bayesian calibration process in order to quantify uncertain parameters more accurately. The proposed framework is tested on a case study building, and suggestions are made on how to expand the framework for retrofit analysis at an urban-scale. © 2011 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the development of a new building physics and energy supply systems simulation platform. It has been adapted from both existing commercial models and empirical works, but designed to provide expedient exhaustive simulation of all salient types of energy- and carbon-reducing retrofit options. These options may include any combination of behavioural measures, building fabric and equipment upgrades, improved HVAC control strategies, or novel low-carbon energy supply technologies. We provide a methodological description of the proposed model, followed by two illustrative case studies of the tool when used to investigate retrofit options of a mixed-use office building and primary school in the UK. It is not the intention of this paper, nor would it be feasible, to provide a complete engineering decomposition of the proposed model, describing all calculation processes in detail. Instead, this paper concentrates on presenting the particular engineering aspects of the model which steer away from conventional practise. © 2011 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lack of viable methods to map and label existing infrastructure is one of the engineering grand challenges for the 21st century. For instance, over two thirds of the effort needed to geometrically model even simple infrastructure is spent on manually converting a cloud of points to a 3D model. The result is that few facilities today have a complete record of as-built information and that as-built models are not produced for the vast majority of new construction and retrofit projects. This leads to rework and design changes that can cost up to 10% of the installed costs. Automatically detecting building components could address this challenge. However, existing methods for detecting building components are not view and scale-invariant, or have only been validated in restricted scenarios that require a priori knowledge without considering occlusions. This leads to their constrained applicability in complex civil infrastructure scenes. In this paper, we test a pose-invariant method of labeling existing infrastructure. This method simultaneously detects objects and estimates their poses. It takes advantage of a recent novel formulation for object detection and customizes it to generic civil infrastructure scenes. Our preliminary experiments demonstrate that this method achieves convincing recognition results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study which linked demographic variables with barriers affecting the adoption of domestic energy efficiency measures in large UK cities. The aim was to better understand the 'Energy Efficiency Gap' and improve the effectiveness of future energy efficiency initiatives. The data for this study was collected from 198 general population interviews (1.5-10 min) carried out across multiple locations in Manchester and Cardiff. The demographic variables were statistically linked to the identified barriers using a modified chi-square test of association (first order Rao-Scott corrected to compensate for multiple response data), and the effect size was estimated with an odds-ratio test. The results revealed that strong associations exist between demographics and barriers, specifically for the following variables: sex; marital status; education level; type of dwelling; number of occupants in household; residence (rent/own); and location (Manchester/Cardiff). The results and recommendations were aimed at city policy makers, local councils, and members of the construction/retrofit industry who are all working to improve the energy efficiency of the domestic built environment. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes first some of the recent performance checks on the high performance fibre-reinforced cementitious composite CARDIFRC and then its application to the retrofitting of damaged concrete beams. It is shown that an even distribution of fibres throughout the bulk of the material is crucial to its excellent fatigue performance and to the reduction in the autogenous shrinkage strains. The distribution of fibres in beams, cylinders and strips is examined using computerised tomography imaging and traditional image analysis. Thin strips of CARDIFRC are used to retrofit damaged concrete beams which are subjected to thermal cycling. It is shown that neither the load carrying capacity of the retrofitted beams nor the bond between retrofit strips and concrete deteriorates with thermal cycling. The load carrying capacity of retrofitted beams is predicted with a model based on fracture mechanics, and the predictions are shown to be in good agreement with test data. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020-2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology for the analysis of building energy retrofits has been developed for a diverse set of buildings at the Royal Botanic Gardens (RBG), Kew in southwest London, UK. The methodology requires selection of appropriate building simulation tools dependent on the nature of the principal energy demand. This has involved the development of a stand-alone model to simulate the heat flow in botanical glasshouses, as well as stochastic simulation of electricity demand for buildings with high equipment density and occupancy-led operation. Application of the methodology to the buildings at RBG Kew illustrates the potential reduction in energy consumption at the building scale achievable from the application of retrofit measures deemed appropriate for heritage buildings and the potential benefit to be gained from onsite generation and supply of energy. © 2014 Elsevier Ltd.