5 resultados para recycling of nutrients

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work examines the basic feasibility of the net-zero-balance TRU multi-recycling concept in which trivalent lanthanide fission products (Ln(III) ) are not separated from trivalent actinides (An(III)). The TRU together with Eu and Gd isotopes are recycled in a standard PWR using Combined Non-Fertile and UO2 (CONFU) assembly design. The assembly assumes a heterogeneous structure where about 20% of U02 fuel pins on the assembly periphery are replaced with Inert Matrix Fuel (IMF) pins hosting TRU, Gd, and Eu generated in the previous cycles. The 2-D neutronic analysis show potential feasibility of Ln / An recycling in PWR using CONFU assembly. Recycling of Ln reduces the fuel cycle length by about 30 effective full power days (EFPD) and TRU destruction efficiency by about 5%. Power peaking factors and reactivity feedback coefficients are close to those of CONFU assembly without Ln recycling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The feasibility of a conventional PWR fuel cycle with complete recycling of TRU elements in the same reactor is investigated. A new Combined Non-fertile and Uranium (CONFU) fuel assembly where about 20% of the uranium fuel pins are replaced with fertile free fuel (FFF) hosting TRU generated in the previous cycle is proposed. In this sustainable fuel cycle based on the CONFU fuel assembly concept, the amount and radiotoxicity of the nuclear waste can be significantly reduced in comparison with the conventional once-through UO 2 fuel cycle. It is shown that under the constraints of acceptable power peaking limits, the CONFU assembly exhibits negative reactivity feedback coefficients comparable in values to those of the reference UO2 fuel. Moreover, the effective delayed neutron fraction is about the same as for UO2-fueled cores. Therefore, feasibility of the PWR core operation and control with complete TRU recycle has been shown in principle. However, gradual build up of small amounts of Cm and Cf challenges fuel reprocessing and fabrication due to the high spontaneous fissions rates of these nuclides and heat generation by some Pu, Am, and Cm isotopes. Feasibility of the processing steps becomes more attainable if the time between discharge and reprocessing is 20 years or longer. The implications for the entire fuel cycle will have to be addressed in future studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

According to a recent report by the European Commission, within the European Union, the construction and demolition wastes come to at least 450 million tons per year. Roughly 75% of the waste is disposed to landfill, despite its major recycling potential. The bulk constituents of demolition debris are concrete (50-55%) and masonry (30-40%) with only small percentages of other materials such as metals, glass and timber. In Cyprus, at present, recycling of waste materials is practically inexistent and almost the entire demolition waste products are disposed in landfill sites, with all possible economic, technical and environmental impacts. This research paper presents the evaluation and the effective reuse of waste construction materials, such as recycled lime powder (RLP) and recycled concrete aggregates (RCA), disposed to landfill sites in Cyprus, due to the lack of a lucid recycling policy and knowledge. Results show that both RLP and RCA have the potential to produce good quality and robust concrete mixtures both in terms of mechanical and durability performance. © 2013 Elsevier B.V. All rights reserved.