6 resultados para real gas
em Cambridge University Engineering Department Publications Database
Resumo:
Although increasing the turbine inlet temperature has traditionally proved the surest way to increase cycle efficiency, recent work suggests that the performance of future gas turbines may be limited by increased cooling flows and losses. Another limiting scenario concerns the effect on cycle performance of real gas properties at high temperatures. Cycle calculations of uncooled gas turbines show that when gas properties are modelled accurately, the variation of cycle efficiency with turbine inlet temperature at constant pressure ratio exhibits a maximum at temperatures well below the stoichiometric limit. Furthermore, the temperature at the maximum decreases with increasing compressor and turbine polytropic efficiency. This behaviour is examined in the context of a two-component model of the working fluid. The dominant influences come from the change of composition of the combustion products with varying air/fuel ratio (particularly the contribution from the water vapour) together with the temperature variation of the specific heat capacity of air. There are implications for future industrial development programmes, particularly in the context of advanced mixed gas-steam cycles.
Resumo:
Gas turbine compression systems are required to perform adequately over a range of operating conditions. Complexity has encouraged the conventional design process for compressors to focus initially on one operating point, usually the most commonor arduous, to draw up an outline design. Generally, only as this initial design is refined is its offdesign performance assessed in detail. Not only does this necessarily introduce a potentially costly and timeconsuming extra loop in the design process, but it also may result in a design whose offdesign behavior is suboptimal. Aversion of nonintrusive polynomial chaos was previously developed in which a set of orthonormal polynomials was generated to facilitate a rapid analysis of robustness in the presence of generic uncertainties with good accuracy. In this paper, this analysis method is incorporated in real time into the design process for the compression system of a three-shaft gas turbine aeroengine. This approach to robust optimization is shown to lead to designs that exhibit consistently improved system performance with reduced sensitivity to offdesign operation.
Resumo:
High-altitude relight inside a lean-direct-injection gas-turbine combustor is investigated experimentally by highspeed imaging. Realistic operating conditions are simulated in a ground-based test facility, with two conditions being studied: one inside and one outside the combustor ignition loop. The motion of hot gases during the early stages of relight is recorded using a high-speed camera. An algorithm is developed to track the flame movement and breakup, revealing important characteristics of the flame development process, including stabilization timescales, spatial trajectories, and typical velocities of hot gas motion. Although the observed patterns of ignition failure are in broad agreement with results from laboratory-scale studies, other aspects of relight behavior are not reproduced in laboratory experiments employing simplified flow geometries and operating conditions. For example, when the spark discharge occurs, the air velocity below the igniter in a real combustor is much less strongly correlated to ignition outcome than laboratory studies would suggest. Nevertheless, later flame development and stabilization are largely controlled by the cold flowfield, implying that the location of the igniter may, in the first instance, be selected based on the combustor cold flow. Copyright © 2010.