8 resultados para ratings aggregation

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The supra-molecular self-assembly of peptides and proteins is a process which underlies a range of normal and aberrant biological pathways in nature, but one which remains challenging to monitor in a quantitative way. We discuss the experimental details of an approach to this problem which involves the direct measurement in vitro of mass changes of the aggregates as new molecules attach to them. The required mass sensitivity can be achieved by the use of a quartz crystal transducer-based microbalance. The technique should be broadly applicable to the study of protein aggregation, as well as to the identification and characterisation of inhibitors and modulators of this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the inverter ratings of Brushless Doubly-Fed Machine (BDFM) adjustable speed drive (ASD) or generator (ASG) systems. Based on the per phase equivalent circuit model, the ratings of the two inverters in a bidirectional converter are evaluated individually. An approach to minimise the total inverter rating is presented, taking into account power factor constraints of the power grid. The effects of speed deviation and control winding excitation on the inverter ratings are discussed. Predictions of inverter ratings are presented with experimental verification. A design example is also provided in which the total inverter rating is minimised for a practical BDFM based ASG system. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic forces play a key role in mediating interactions between proteins. However, gaining quantitative insights into the complex effects of electrostatics on protein behavior has proved challenging, due to the wide palette of scenarios through which both cations and anions can interact with polypeptide molecules in a specific manner or can result in screening in solution. In this article, we have used a variety of biophysical methods to probe the steady-state kinetics of fibrillar protein self-assembly in a highly quantitative manner to detect how it is modulated by changes in solution ionic strength. Due to the exponential modulation of the reaction rate by electrostatic forces, this reaction represents an exquisitely sensitive probe of these effects in protein-protein interactions. Our approach, which involves a combination of experimental kinetic measurements and theoretical analysis, reveals a hierarchy of electrostatic effects that control protein aggregation. Furthermore, our results provide a highly sensitive method for the estimation of the magnitude of binding of a variety of ions to protein molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expectations about the magnitude of impending pain exert a substantial effect on subsequent perception. However, the neural mechanisms that underlie the predictive processes that modulate pain are poorly understood. In a combined behavioral and high-density electrophysiological study we measured anticipatory neural responses to heat stimuli to determine how predictions of pain intensity, and certainty about those predictions, modulate brain activity and subjective pain ratings. Prior to receiving randomized laser heat stimuli at different intensities (low, medium or high) subjects (n=15) viewed cues that either accurately informed them of forthcoming intensity (certain expectation) or not (uncertain expectation). Pain ratings were biased towards prior expectations of either high or low intensity. Anticipatory neural responses increased with expectations of painful vs. non-painful heat intensity, suggesting the presence of neural responses that represent predicted heat stimulus intensity. These anticipatory responses also correlated with the amplitude of the Laser-Evoked Potential (LEP) response to painful stimuli when the intensity was predictable. Source analysis (LORETA) revealed that uncertainty about expected heat intensity involves an anticipatory cortical network commonly associated with attention (left dorsolateral prefrontal, posterior cingulate and bilateral inferior parietal cortices). Relative certainty, however, involves cortical areas previously associated with semantic and prospective memory (left inferior frontal and inferior temporal cortex, and right anterior prefrontal cortex). This suggests that biasing of pain reports and LEPs by expectation involves temporally precise activity in specific cortical networks.