6 resultados para ranging of the answers
em Cambridge University Engineering Department Publications Database
Resumo:
The UV-VIS characteristics of carbon ions fabricated by an arch discharge in water or liquid nitrogen show characteristics that are similar to the interstellar absorption feature. Thus, high purity and well separated carbon onion samples prepared by annealing the as-fabricated powder in air at 600°C for 60 showed a constant absorption peak at 4.6 μm-1 with a variable width ranging from 1.2-1.6 μm-1. In addition to the UV-VIS data, the origin of the absorption feature at 4.6 μm-1 in carbon onions can be attributed to the collective excitations of π plasmons.
Resumo:
The self-assembly of proteins and peptides into polymeric amyloid fibrils is a process that has important implications ranging from the understanding of protein misfolding disorders to the discovery of novel nanobiomaterials. In this study, we probe the stability of fibrils prepared at pH 2.0 and composed of the protein insulin by manipulating electrostatic interactions within the fibril architecture. We demonstrate that strong electrostatic repulsion is sufficient to disrupt the hydrogen-bonded, cross-β network that links insulin molecules and ultimately results in fibril dissociation. The extent of this dissociation correlates well with predictions for colloidal models considering the net global charge of the polypeptide chain, although the kinetics of the process is regulated by the charge state of a single amino acid. We found the fibrils to be maximally stable under their formation conditions. Partial disruption of the cross-β network under conditions where the fibrils remain intact leads to a reduction in their stability. Together, these results support the contention that a major determinant of amyloid stability stems from the interactions in the structured core, and show how the control of electrostatic interactions can be used to characterize the factors that modulate fibril stability.
Resumo:
Chemical-looping combustion (CLC) has the inherent property of separating CO2 from flue gases. Instead of air, it uses an oxygen-carrier, usually in the form of a metal oxide, to provide oxygen for combustion. When used for the combustion of gaseous fuels, such as natural gas, or synthesis gas from the gasification of coal, the technique gives a stream of CO2 which, on an industrial scale, would be sufficiently pure for geological sequestration. An important issue is the form of the metal oxide, since it must retain its reactivity through many cycles of complete reduction and oxidation. Here, we report on the rates of oxidation of one constituent of synthesis gas, H2, by co-precipitated mixtures of CuO+Al2O3 using a laboratory-scale fluidised bed. To minimise the influence of external mass transfer, and also of errors in the measurement of [H2], particles sized to 355-500μm were used at low [H2], with the temperature ranging from 450 to 900°C. Under such conditions, the reaction was slow enough for meaningful measurements of the intrinsic kinetics to be made. The reaction was found to be first order with respect to H2. Above ∼800°C, the reaction of CuO was fast and conformed to the shrinking core mechanism, proceeding via the intermediate, Cu2O, in: 2CuO+H2→Cu2O+H2O, ΔH1073 K0=- 116.8 kJ/mol; Cu2O+H2→2Cu+H2O, ΔH1073 K0-80.9 kJ/mol. After oxidation of the products Cu and Cu2O back to CuO, the kinetics in subsequent cycles of chemical looping oxidation of H2 could be approximated by those in the first. Interestingly, the carrier was found to react at temperatures as low as 300°C. The influence of the number of cycles of reduction and oxidation is explored. Comparisons are drawn with previous work using reduction by CO. Finally, these results indicate that the kinetics of reaction of the oxygen carrier with gasifier synthesis gases is very much faster than rates of gasification of the original fuel. © 2010 The Institution of Chemical Engineers.
Resumo:
The detailed understanding of the electronic properties of carbon-based materials requires the determination of their electronic structure and more precisely the calculation of their joint density of states (JDOS) and dielectric constant. Low electron energy loss spectroscopy (EELS) provides a continuous spectrum which represents all the excitations of the electrons within the material with energies ranging between zero and about 100 eV. Therefore, EELS is potentially more powerful than conventional optical spectroscopy which has an intrinsic upper information limit of about 6 eV due to absorption of light from the optical components of the system or the ambient. However, when analysing EELS data, the extraction of the single scattered data needed for Kramers Kronig calculations is subject to the deconvolution of the zero loss peak from the raw data. This procedure is particularly critical when attempting to study the near-bandgap region of materials with a bandgap below 1.5 eV. In this paper, we have calculated the electronic properties of three widely studied carbon materials; namely amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C) and C60 fullerite crystal. The JDOS curve starts from zero for energy values below the bandgap and then starts to rise with a rate depending on whether the material has a direct or an indirect bandgap. Extrapolating a fit to the data immediately above the bandgap in the stronger energy loss region was used to get an accurate value for the bandgap energy and to determine whether the bandgap is direct or indirect in character. Particular problems relating to the extraction of the single scattered data for these materials are also addressed. The ta-C and C60 fullerite materials are found to be direct bandgap-like semiconductors having a bandgaps of 2.63 and 1.59eV, respectively. On the other hand, the electronic structure of a-C was unobtainable because it had such a small bandgap that most of the information is contained in the first 1.2 eV of the spectrum, which is a region removed during the zero loss deconvolution.
Resumo:
Various MgB2 wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB2 wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 °C for a hold time of 20-40min. Current limiting properties of MgB2 wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50Hz. The quench currents extracted from the pulse measurements were in a range of 200-328A for different samples, corresponding to an average engineering critical current density (Je) of around 4.8 × 10 4Acm-2 at 25K in the self-field, based on the 1νVcm-1 criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB2 wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB2 wires. © IOP Publishing Ltd.
Resumo:
We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30mT to 130mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.