11 resultados para quantum coherent control
em Cambridge University Engineering Department Publications Database
Resumo:
We solve the problem of steering a three-level quantum system from one eigen-state to another in minimum time and study its possible extension to the time-optimal control problem for a general n-level quantum system. For the three-level system we find all optimal controls by finding two types of symmetry in the problem: ℤ2 × S3 discrete symmetry and S1 continuous symmetry, and exploiting them to solve the problem through discrete reduction and symplectic reduction. We then study the geometry, in the same framework, which occurs in the time-optimal control of a general n-level quantum system. © 2007 IEEE.
Resumo:
We solve the problem of steering a three-level quantum system from one eigen-state to another in minimum time and study its possible extension to the time-optimal control problem for a general n-level quantum system. For the three-level system we find all optimal controls by finding two types of symmetry in the problems: ℤ × S3 discrete symmetry and 51 continuous symmetry, and exploiting them to solve the problem through discrete reduction and symplectic reduction. We then study the geometry, in the same framework, which occurs in the time-optimal control of a general n-level quantum system. Copyright ©2007 Watam Press.
Resumo:
The operation on how high quality single-mode operation can be readily attained on etching circles in multimode devices is discussed. Arrays of such spots can also be envisaged. Control of the polarization state is also achieved by use of deep line etches. The output filaments and beam shapes of the conventional multimode vertical cavity surface emitting lasers (VCSEL) is shown to be engineered in terms of their positions, widths, and polarizations by use of focused ion beam etching (FIBE). Several GaAs quantum well top-emitting devices with cavity diameters of 10 μm and 18 μm were investigated.
Resumo:
Over the last two or three years, the increasing costs of energy and worsening market conditions have focussed even greater attention within paper mills than before, on considering ways to improve efficiency and reduce the energy used in paper making. Arising from a multivariable understanding of paper machine operation, Advanced Process Control (APC) technology enables paper machine behaviour to be controlled in a more coherent way, using all the variables available for control. Furthermore, with the machine under better regulation and with more variables used in control, there is the opportunity to optimise machine operation, usually providing very striking multi-objective performance improvement benefits of a number of kinds. Traditional three term control technology does not offer this capability. The paper presents results from several different paper machine projects we have undertaken around the world. These projects have been aimed at improving machine stability, optimising chemicals usage and reducing energy use. On a brown paperboard machine in Australasia, APC has reduced specific steam usage by 10%, averaged across the grades; the controller has also provided a significant capacity to increase production. On a North American newsprint machine, the APC system has reduced steam usage by more than 10%, and it provides better control of colour and much improved wet end stability. The paper also outlines early results from two other performance improvement projects, each incorporating a different approach to reducing the energy used in paper making. The first of these two projects is focussed on optimising sheet drainage, aiming to present the dryer with a sheet having higher solids content than before. The second project aims to reduce specific steam usage by optimising the operation of the dryer hood.
Resumo:
The structural and optical properties of trench defects, which are poorly understood yet commonly occurring defects observed on the surfaces of InGaN multiple quantum wells (MQW), are reported. These defects comprise near-circular trenches which enclose areas of MQW which give rise to a red shift in peak photoluminescence emission and a change in cathodoluminescence intensity with respect to the surrounding material. Atomic force microscopy shows that the height of trench-enclosed areas differs from that of the surrounding quantum well structure, and that trenches are unrelated to the commonly observed V-defects in InGaN films, despite being occasionally intersected by them. Cross-sectional electron microscopy analysis of trenches with raised centres suggests that the red shift in the observed cathodoluminescence peak emission may be due to the quantum wells being thicker in the trench-enclosed regions than in the surrounding quantum well area. The mechanism of trench formation and its implication for the control of the emission properties of light-emitting diodes is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Tunneling through two vertically coupled quantum dots is studied by means of a Pauli master equation model. The observation of double peaks in the current-voltage characteristic in a recent experiment is analyzed in terms of the tunnel coupling between the quantum dots and the coupling to the contacts. Different regimes for the emitter chemical potential indicating different peak scenarios in the tunneling current are discussed in detail. We show by comparison with a density matrix approach that the interplay of coherent and incoherent effects in the stationary current can be fully described by this approach.
Resumo:
A theoretical model of superradiant pulse generation in semiconductor laser structures is developed. It is shown that a high optical gain of the medium can overcome phase relaxation and results in a built-up superradiant state (macroscopic dipole) in an assembly of electron - hole pairs on a time scale much longer than the characteristic polarisation relaxation time T2. A criterion of the superradiance generation is the condition acmT2 > 1, where α is the gain coefficient and cm is the speed of light in the medium. The theoretical model describes both qualitatively and quantitatively the author's own experimental results.
Resumo:
The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.