7 resultados para propylene epoxidation
em Cambridge University Engineering Department Publications Database
Resumo:
Experiments with N//2O were carried out with a view to obtaining additional information about the reactivity of oxygen surface species. On clean Ag, N//2O decomposition was found to be an activated process which led exclusively to the deposition of O(a) species. The presence of preadsorbed oxygen or subsurface oxygen served to enhance the deposition rate of O(a). Subsequent dosing with ethylene at 300 K of such an oxygen-populated surface followed by TPR examination showed it to be active for ethylene oxide formation. Control experiments established that adventitious decomposition of N//2O at the reactor walls or specimen supports followed by possible re-absorption of O//2(a) was an entirely negligible process. ) The oxidation activity of N//2O was also investigated at elevated pressures in the batch reactor.
Resumo:
The silver-catalysed oxidation of ethylene has been examined on the (III) face of a single crystal by a combination of electron spectroscopy and kinetic measurements at pressures of up to 50 Torr. The necessary and sufficient conditions for ethylene oxide formation are established, reaction intermediates are identified, kinetic isotope effects are observed and the role of Cs in modifying reaction selectivity is examined. It is shown that surface alkali exhibits opposite effects on the reactions which lead to the further oxidation of ethylene oxide and on the direct combustion of ethylene. © 1984.
Resumo:
In the domain of energy storage, electrochemical capacitors have numerous applications ranging from hybrid vehicles to consumer electronics, with very high power density at the cost of relatively low energy storage. Here, we report an approach that uses vertically aligned carbon nanotube arrays as electrodes in electrochemical capacitors. Different electrolytes were used and multiple parameters of carbon nanotube array were compared: carbon nanotube arrays were shown to be two to three times better than graphite in term of specific capacitance, while the surface functionalization was demonstrated to be a critical factor in both aqueous and nonaqueous solutions to increase the specific capacitance. We found that a maximum energy density of 21 Wh/kg at a power density of 1.1 kW/kg for a hydrophilic electrode, could be easily achieved by using tetraethylammonium tetrafluoroborate in propylene carbonate. These are encouraging results in the path of energy-storage devices with both high energy density and power density, using only carbon-based materials for the electrodes with a very long lifetime, of tens of thousands of cycles. © 2011 IEEE.