22 resultados para projectile fragmentation
em Cambridge University Engineering Department Publications Database
Resumo:
The impact response of laminated composites consisting of alternate layers of AI ahoy foam and Al2O3 was studied experimentally in low and intermediate velocity regimes. Low velocity impacts (1.2-2.8 m s(-1)) were conducted using an instrumented falling weight apparatus and were compared with static indentation tests (0.2 x 10(-4) m s(-1)). Intermediate velocity impacts were carried out by means of both Hopkinson bar (60 m s(-1)) and gas gun (200 m s(-1)) tests, Post-impact damage was assessed using X-ray radiography and microscopy, It was found that there is good correlation between low velocity impact and quasi-static responses. In both cases, penetration of the layered targets resulted in the formation of a distinctive plug. Increasing impact velocity (intermediate velocity range) snitched the penetration mode from plugging to fragmentation, giving rise to an increase in the absorbed energy. In this range, impacts led to localisation of damage in the region under the projectile, Furthermore, a comparison has been made between the penetration response of foam laminates and dense metal laminates of equivalent areal density. Preliminary results suggest that the dense metal laminates are superseded by the foam laminates on an energy absorption basis.
Resumo:
We develop a finite-element method for the simulation of dynamic fracture and fragmentation of thin-shells. The shell is spatially discretized with subdivision shell elements and the fracture along the element edges is modeled with a cohesive law. In order to follow the propagation and branching of cracks, subdivision shell elements are pre-fractured ab initio and the crack opening is constrained prior to crack nucleation. This approach allows for shell fracture in an in-plane tearing mode, a shearing mode, or a bending of hinge mode. The good performance of the method is demonstrated through the simulation of petalling failure experiments in aluminum plates. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Polymer composites comprising ultra-high molecular weight polyethylene (UHWMPE) fibers in a compliant matrix are now widely used in ballistic applications with varying levels of success. This is primarily due to a poor understanding of the mechanics of penetration of these composites in ballistic protection systems. In this study, we report experimental observations of the penetration mechanisms in four model systems impacted by a 12.7 mm diameter spherical steel projectile. The four model targets designed to highlight different penetration mechanisms in Dyneema® UHWMPE composites were: (i) a bare aluminum plate; (ii) the same plate fully encased in a 5.9 mm thick casing of Dyneema®; (iii) the fully encased plate with a portion of the Dyneema® removed from the front face so that the projectile impacts directly the Al plate; and (iv) the fully encased plate with a portion of the Dyneema® removed from the rear face so that the projectile can exit the Al plate without again interacting with the Dyneema®. A combination of synchronized high speed photography with three cameras, together with post-test examination of the targets via X-ray tomography and optical microscopy was used to elucidate the deformation and perforation mechanisms. The measurements show that the ballistic resistance of these targets increases in the order: bare Al plate, rear face cutout target, fully encased target and front face cutout target. These findings are explained based on the following key findings: (a) the ballistic performance of Dyneema® plates supported on a foundation is inferior to Dyneema® plates supported along their edges; (b) the apparent ballistic resistance of Dyneema® plates increases if the plates are given an initial velocity prior to the impact by the projectile, thereby reducing the relative velocity between the Dyneema® plate and projectile; and (c) when the projectile is fragmented prior to impact, the spatially and temporally distributed loading enhances the ballistic resistance of the Dyneema®. The simple model targets designed here have elucidated mechanisms by which Dyneema® functions in multi-material structures. © 2014 Elsevier Ltd.
Resumo:
Peptides and proteins possess an inherent propensity to self-assemble into generic fibrillar nanostructures known as amyloid fibrils, some of which are involved in medical conditions such as Alzheimer disease. In certain cases, such structures can self-propagate in living systems as prions and transmit characteristic traits to the host organism. The mechanisms that allow certain amyloid species but not others to function as prions are not fully understood. Much progress in understanding the prion phenomenon has been achieved through the study of prions in yeast as this system has proved to be experimentally highly tractable; but quantitative understanding of the biophysics and kinetics of the assembly process has remained challenging. Here, we explore the assembly of two closely related homologues of the Ure2p protein from Saccharomyces cerevisiae and Saccharomyces paradoxus, and by using a combination of kinetic theory with solution and biosensor assays, we are able to compare the rates of the individual microscopic steps of prion fibril assembly. We find that for these proteins the fragmentation rate is encoded in the structure of the seed fibrils, whereas the elongation rate is principally determined by the nature of the soluble precursor protein. Our results further reveal that fibrils that elongate faster but fracture less frequently can lose their ability to propagate as prions. These findings illuminate the connections between the in vitro aggregation of proteins and the in vivo proliferation of prions, and provide a framework for the quantitative understanding of the parameters governing the behavior of amyloid fibrils in normal and aberrant biological pathways.
Resumo:
Polypeptide sequences have an inherent tendency to self-assemble into filamentous nanostructures commonly known as amyloid fibrils. Such self-assembly is used in nature to generate a variety of functional materials ranging from protective coatings in bacteria to catalytic scaffolds in mammals. The aberrant self-assembly of misfolded peptides and proteins is also, however, implicated in a range of disease states including neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. It is increasingly evident that the intrinsic material properties of these structures are crucial for understanding the thermodynamics and kinetics of the pathological deposition of proteins, particularly as the mechanical fragmentation of aggregates enhances the rate of protein deposition by exposing new fibril ends which can promote further growth. We discuss here recent advances in physical techniques that are able to characterise the hierarchical self-assembly of misfolded protein molecnles and define their properties. © 2010 Materials Research Society.
Resumo:
The molecular chaperone αB-crystallin is a small heat-shock protein that is upregulated in response to a multitude of stress stimuli, and is found colocalized with Aβ amyloid fibrils in the extracellular plaques that are characteristic of Alzheimer's disease. We investigated whether this archetypical small heat-shock protein has the ability to interact with Aβ fibrils in vitro. We find that αB-crystallin binds to wild-type Aβ(42) fibrils with micromolar affinity, and also binds to fibrils formed from the E22G Arctic mutation of Aβ(42). Immunoelectron microscopy confirms that binding occurs along the entire length and ends of the fibrils. Investigations into the effect of αB-crystallin on the seeded growth of Aβ fibrils, both in solution and on the surface of a quartz crystal microbalance biosensor, reveal that the binding of αB-crystallin to seed fibrils strongly inhibits their elongation. Because the lag phase in sigmoidal fibril assembly kinetics is dominated by elongation and fragmentation rates, the chaperone mechanism identified here represents a highly effective means to inhibit fibril proliferation. Together with previous observations of αB-crystallin interaction with α-synuclein and insulin fibrils, the results suggest that this mechanism is a generic means of providing molecular chaperone protection against amyloid fibril formation.
Resumo:
Sintered boron carbide is very hard, and can be an attractive material for wear-resistant components in critical applications. Previous studies of the erosion of less hard ceramics have shown that their wear resistance depends on the nature of the abrasive particles. Erosion tests were performed on a sintered boron carbide ceramic with silica, alumina and silicon carbide erodents. The different erodents caused different mechanisms of erosion, either by lateral cracking or small-scale chipping; the relative values of the hardness of the erodent and the target governed the operative mechanism. The small-scale chipping mechanism led to erosion rates typically an order of magnitude lower than the lateral fracture mechanism. The velocity exponents for erosion in the systems tested were similar to those seen in other work, except that measured with the 125 to 150 μm silica erodent. With this erodent the exponent was initially high, then decreased sharply with increasing velocity and became negative. It was proposed that this was due to deformation and fragmentation of the erodent particles. In the erosion testing of ceramics, the operative erosion mechanism is important. Care must be taken to ensure that the same mechanism is observed in laboratory testing as that which would be seen under service conditions, where the most common erodent is silica.
Resumo:
The attrition of two potential oxygen-carriers for chemical-looping, 100. wt% mechanically-mixed, unsupported iron oxide (400-600 μm diameter) and 25. wt% copper oxide impregnated on alumina (600-900 μm diameter), has been studied. The rates of attrition of batches of these particles whilst they were being fluidised and subjected to successive cycles of reduction and oxidation were determined by measuring the rate of production of fine particles elutriated from the bed, as well as progressive changes in the distribution of particle sizes retained in the bed. The ability of the particles to withstand impacts was also investigated by examining the degree of fragmentation of 1. g of reacted particles of known size on projecting them at a target at various velocities. It was found that the mechanical strength of the iron oxide particles deteriorated significantly after repeated cycles of oxidation and reduction. Thus, the rate of elutriation increased ~35-fold between the 1st and 10th cycle. At an impact velocity of 38. m/s, the amount of fragmentation in the impact test, viz. mass fraction of particles after impact having a size less than that before impact, increased from ~2.3. wt% (fresh particles) to 98. wt% after the 10th cycle. The CuO particles, in comparison, were able to withstand repeated reaction: no signs of increased rates of elutriation or fragmentation were observed over ten cycles. These results highlight the importance of selecting a durable support for oxygen-carriers. © 2011 Elsevier Ltd.
Resumo:
Discrete particle simulations of column of an aggregate of identical particles impacting a rigid, fixed target and a rigid, movable target are presented with the aim to understand the interaction of an aggregate of particles upon a structure. In most cases the column of particles is constrained against lateral expansion. The pressure exerted by the particles upon the fixed target (and the momentum transferred) is independent of the co-efficient of restitution and friction co-efficient between the particles but are strongly dependent upon the relative density of the particles in the column. There is a mild dependence on the contact stiffness between the particles which controls the elastic deformation of the densified aggregate of particles. In contrast, the momentum transfer to a movable target is strongly sensitive to the mass ratio of column to target. The impact event can be viewed as an inelastic collision between the sand column and the target with an effective co-efficient of restitution between 0 and 0.35 depending upon the relative density of the column. We present a foam analogy where impact of the aggregate of particles can be modelled by the impact of an equivalent foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally and yet give predictions to within 5% of the full discrete particle calculations. They also suggest that "model" materials can be used to simulate the loading by an aggregate of particles within a laboratory setting. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The dynamic response of end-clamped monolithic beams and sandwich beams of equal areal mass have been measured by loading the beams at mid-span with metal foam projectiles to simulate localised blast loading. The sandwich beams were made from carbon fibre laminate and comprised identical face sheets and a square-honeycomb core. The transient deflection of the beams was determined as a function of projectile momentum, and the measured response was compared with finite element simulations based upon a damage mechanics approach. A range of failure modes were observed in the sandwich beams including core fracture, plug-type shear failure of the core, debonding of the face sheets from the core and tensile tearing of the face sheets at the supports. In contrast, the monolithic beams failed by a combination of delamination of the plies and tensile failure at the supports. The finite element simulations of the beam response were accurate provided the carbon fibre properties were endowed with rate sensitivity of damage growth. The relative performance of monolithic and sandwich beams were quantified by the maximum transverse deflection at mid-span for a given projectile momentum. It was found that the sandwich beams outperformed both monolithic composite beams and steel sandwich beams with a square-honeycomb core. However, the composite beams failed catastrophically at a lower projectile impulse than the steel beams due to the lower ductility of the composite material. © 2011 Elsevier Ltd. All rights reserved.