3 resultados para project work

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is a product of close industry-academia collaboration between British Aerospace and the Cambridge Engineering Design Centre (EDC). British Aerospace designs and integrates some of the most complex systems in the world, and its expertise in this field has enabled the company to become the United Kingdom's largest exporter. However, to stay at the forefront of the highly competitive aerospace industry it is necessary to seek new ways to work more effectively and more efficiently. The Cambridge EDC has played a part in supporting these needs by providing access to the methods and tools that it has developed for improving the process of designing mechanical systems. The EDC has gained an international reputation for the quality of its work in this subject. Thus, the collaboration is between two organisations each of whom are leaders in their respective fields. The central aim of the project has been to demonstrate how a systematic design process can be applied to a real design task identified by industry. The task selected was the design of a flight refuelling probe which would enable a combat aircraft to refuel from a "flying tanker". However, the systematic approach, methods and tools described in this report are applicable to most engineering design tasks. The findings presented in this report provide a sound basis for comparing the recommended systematic design process with industrial practice. The results of this comparison would enable the company to define ways in which its existing design process can be improved. This research project has a high degree of industrial relevance. The value of the work may be judged in terms of the opportunities it opens up for positive changes to the company's engineering operations. Several members of the EDC have contributed to the project. These include Dr Lucienne Blessing, Dr Stuart Burgess, Dr Amaresh Chakrabarti, Major Mark Nowack, Aylmer Johnson and Dr Paul Weaver. At British Aerospace special thanks must go to Alan Dean and David Halliday for their interest and the support they have given. The project has been managed by Dr Nigel Upton of British Aerospace during a 3 year secondment to the EDC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses innovations in curriculum development in the Department of Engineering at the University of Cambridge as a participant in the Teaching for Learning Network (TFLN), a teaching and learning development initiative funded by the Cambridge-MIT Institute a pedagogic collaboration and brokerage network. A year-long research and development project investigated the practical experiences through which students traditionally explore engineering disciplines, apply and extend the knowledge gained in lectures and other settings, and begin to develop their professional expertise. The research project evaluated current practice in these sessions and developed an evidence-base to identify requirements for new activities, student support and staff development. The evidence collected included a novel student 'practice-value' survey highlighting effective practice and areas of concern, classroom observation of practicals, semi-structured interviews with staff, a student focus group and informal discussions with staff. Analysis of the data identified three potentially 'high-leverage' strategies for improvement: development of a more integrated teaching framework, within which practical work could be contextualised in relation to other learning; a more transparent and integrated conceptual framework where theory and practice were more closely linked; development of practical work more reflective of the complex problems facing professional engineers. This paper sets out key elements of the evidence collected and the changes that have been informed by this evidence and analysis, leading to the creation of a suite of integrated practical sessions carefully linked to other course elements and reinforcing central concepts in engineering, accompanied by a training and support programme for teaching staff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relatively new in the UK, soil mix technology applied to the in-situ remediation of contaminated land involves the use of mixing tools and additives to construct permeable reactive in-ground barriers and low-permeability containment walls and for hot-spot soil treatment by stabilisation/ solidification. It is a cost effective and versatile approach with numerous environmental advantages. Further commercial advantages can be realised by combining this with ground improvement through the development of a single integrated soil mix technology system which is the core objective of Project SMiRT (Soil Mix Remediation Technology). This is a large UK-based R&D project involving academia-industry collaboration with a number of tasks including equipment development, laboratory treatability studies, field trials, stakeholder consultation and dissemination activities. This paper presents aspects of project SMiRT relating to the laboratory treatability study work leading to the design of the field trials. © 2012 American Society of Civil Engineers.