178 resultados para process design

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In conventional Finite Element Analysis (FEA) of radial-axial ring rolling (RAR) the motions of all tools are usually defined prior to simulation in the preprocessing step. However, the real process holds up to 8 degrees of freedom (DOF) that are controlled by industrial control systems according to actual sensor values and preselected control strategies. Since the histories of the motions are unknown before the experiment and are dependent on sensor data, the conventional FEA cannot represent the process before experiment. In order to enable the usage of FEA in the process design stage, this approach integrates the industrially applied control algorithms of the real process including all relevant sensors and actuators into the FE model of ring rolling. Additionally, the process design of a novel process 'the axial profiling', in which a profiled roll is used for rolling axially profiled rings, is supported by FEA. Using this approach suitable control strategies can be tested in virtual environment before processing. © 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ring rolling is an incremental bulk forming process for the near-net-shape production of seamless rings. This paper shows how nowadays the process design and optimization can be efficiently supported by simulation methods. For reliable predictions of the material flow and the microstructure evolution it's necessary to include a real ring rolling mill's control algorithm into the model. Furthermore an approach for the online measurement of the profile evolution during the process is presented by means of axial profiling in ring rolling. Hence the definition of new ring rolling strategies is possible even for advanced geometries.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: Stabilisation/solidification (S/S) has emerged as an efficient and cost-effective technology for the treatment of contaminated soils. However, the performance of S/S-treated soils is governed by several intercorrelated variables, which complicates the optimisation of the treatment process design. Therefore, it is desirable to develop process envelopes, which define the range of operating variables that result in acceptable performance. METHODS: In this work, process envelopes were developed for S/S treatment of contaminated soil with a blend of hydrated lime (hlime) and ground granulated blast furnace slag (GGBS) as the binder (hlime/GGBS = 1:4). A sand contaminated with a mixture of heavy metals and petroleum hydrocarbons was treated with 5%, 10% and 20% binder dosages, at different water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability, acid neutralisation capacity and contaminant leachability with pH, at set periods. RESULTS: The UCS values obtained after 28 days of treatment were up to ∼800 kPa, which is quite low, and permeability was ∼10(-8) m/s, which is higher than might be required. However, these values might be acceptable in some scenarios. The binder significantly reduced the leachability of cadmium and nickel. With the 20% dosage, both metals met the waste acceptance criteria for inert waste landfill and relevant environmental quality standards. CONCLUSIONS: The results show that greater than 20% dosage would be required to achieve a balance of acceptable mechanical and leaching properties. Overall, the process envelopes for different performance criteria depend on the end-use of the treated material.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Design rationale is an effective way of capturing knowledge, since it records the issues addressed, the options considered, and the arguments used when specific decisions are made during the design process. Design rationale is generally captured by identifying elements and their dependencies, i.e. in a structured way. Current retrieval methods focus mainly on either the classification of rationale or on keyword-based searches of records. Keyword-based retrieval is reasonably effective as the information in design rationale records is mainly described using text. However, most of the current keyword-based retrieval methods discard the implicit structures of these records, resulting either in poor precision of retrieval or in isolated pieces of information that are difficult to understand. This ongoing research aims to go beyond keyword-based retrieval by developing methods and tools to facilitate the provision of useful design knowledge in new design projects. Our first step is to understand the structured information derived from the relationship between lumps of text held in different nodes in the design rationale captured via a software tool currently used in industry, and study how this information can be utilised to improve retrieval performance. Specifically, methods for utilising various structured information are developed and implemented on a prototype keyword-based retrieval system developed in our earlier work. The implementation and evaluation of these methods shows that the structured information can be utilised in a number of ways, such as filtering the results and providing more complete information. This allows the retrieval system to present results that are easy to understand, and which closely match designers' queries. Like design rationale, other methods for representing design knowledge also in essence involve structured information and thus the methods proposed can be generalised to be adapted and applied for the retrieval of other kinds of design knowledge. Copyright © 2002-2012 The Design Society. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the past 20 years, ferroelectric liquid crystal over silicon (FLCOS) devices have made a wide impact on applications as diverse as optical correlation and holographic projection. To cover the entire gamut of this technology would be difficult and long winded; hence, this paper describes the significant developments of FLCOS within the Engineering Department at the University of Cambridge.The purpose of this paper is to highlight the key issues in fabricating silicon backplane spatial light modulators (SLMs) and to indicate ways in which the technology can be fabricated using cheap, low-density production and manufacturability. Three main devices have been fabricated as part of several research programmes and are documented in this paper. The fast bitplane SLM and the reconfigurable optical switches for aerospace and telecommunications systems (ROSES) SLM will form the basis of a case study to outline the overall processes involved. There is a great deal of commonality in the fabrication processes for all three devices, which indicates their potential strength and demonstrates that these processes can be made independent of the SLMs that are being assembled. What is described is a generic process that can be applied to any silicon backplane SLM on a die-by-die basis. There are hundreds of factors that can affect the yield in a manufacturing process and the purpose of a good process design procedure is to minimise these factors. One of the most important features in designing a process is fabrication experience, as so many of the lessons in this business can only be learned this way. We are working with the advantage of knowing the mistakes already made in the flat panel display industry, but we are also faced with the fact that those mistakes took many years and many millions of dollars to make.The fabrication process developed here originates and adapts earlier processes from various groups around the world. There are also a few totally new processes that have now been adopted by others in the field. Many, such as the gluing process, are still on-going and have to be worked on more before they will fully suit 'manufacturability'. © 2012 Copyright Taylor and Francis Group, LLC.