33 resultados para privacy-utility trade-off
em Cambridge University Engineering Department Publications Database
Resumo:
Numerous psychophysical studies suggest that the sensorimotor system chooses actions that optimize the average cost associated with a movement. Recently, however, violations of this hypothesis have been reported in line with economic theories of decision-making that not only consider the mean payoff, but are also sensitive to risk, that is the variability of the payoff. Here, we examine the hypothesis that risk-sensitivity in sensorimotor control arises as a mean-variance trade-off in movement costs. We designed a motor task in which participants could choose between a sure motor action that resulted in a fixed amount of effort and a risky motor action that resulted in a variable amount of effort that could be either lower or higher than the fixed effort. By changing the mean effort of the risky action while experimentally fixing its variance, we determined indifference points at which participants chose equiprobably between the sure, fixed amount of effort option and the risky, variable effort option. Depending on whether participants accepted a variable effort with a mean that was higher, lower or equal to the fixed effort, they could be classified as risk-seeking, risk-averse or risk-neutral. Most subjects were risk-sensitive in our task consistent with a mean-variance trade-off in effort, thereby, underlining the importance of risk-sensitivity in computational models of sensorimotor control.
Resumo:
When a racing driver steers a car around a sharp bend, there is a trade-off between speed and accuracy, in that high speed can lead to a skid whereas a low speed increases lap time, both of which can adversely affect the driver's payoff function. While speed-accuracy trade-offs have been studied extensively, their susceptibility to risk sensitivity is much less understood, since most theories of motor control are risk neutral with respect to payoff, i.e., they only consider mean payoffs and ignore payoff variability. Here we investigate how individual risk attitudes impact a motor task that involves such a speed-accuracy trade-off. We designed an experiment where a target had to be hit and the reward (given in points) increased as a function of both subjects' endpoint accuracy and endpoint velocity. As faster movements lead to poorer endpoint accuracy, the variance of the reward increased for higher velocities. We tested subjects on two reward conditions that had the same mean reward but differed in the variance of the reward. A risk-neutral account predicts that subjects should only maximize the mean reward and hence perform identically in the two conditions. In contrast, we found that some (risk-averse) subjects chose to move with lower velocities and other (risk-seeking) subjects with higher velocities in the condition with higher reward variance (risk). This behavior is suboptimal with regard to maximizing the mean number of points but is in accordance with a risk-sensitive account of movement selection. Our study suggests that individual risk sensitivity is an important factor in motor tasks with speed-accuracy trade-offs.
Resumo:
Almost all material selection problems require that a compromise be sought between some metric of performance and cost. Trade-off methods using utility functions allow optimal solutions to be found for two objective, but for three it is harder. This paper develops and demonstrates a method for dealing with three objectives.
Resumo:
Increasing product life allows the embodied emissions in products to be spread across a longer period but can mean that opportunities to improve use-phase efficiency are foregone. In this paper, a model that evaluates this trade-off is presented and used to estimate the optimal product life for a range of metal-intensive products. Two strategies that have potential to save emissions are explored: (1) adding extra embodied emissions to make products more sturdy, increasing product life, and (2) increasing frequency of use, causing early product failure to take advantage of improvements in use-phase efficiency. These strategies are evaluated for two specific case studies (long-life washing machines and more frequent use of vehicles through car clubs) and for a range of embodied and use-phase intensive products under different use-phase improvement rate assumptions. Particular emphasis is placed on the fact that products often fail neither at their design life nor at their optimal life. Policy recommendations are then made regarding the targeting of these strategies according to product characteristics and the timing of typical product failure relative to optimal product life.
Resumo:
3D thermo-electro-mechanical device simulations are presented of a novel fully CMOS-compatible MOSFET gas sensor operating in a SOI membrane. A comprehensive stress analysis of a Si-SiO2-based multilayer membrane has been performed to ensure a high degree of mechanical reliability at a high operating temperature (e.g. up to 400°C). Moreover, optimisation of the layout dimensions of the SOI membrane, in particular the aspect ratio between the membrane length and membrane thickness, has been carried out to find the best trade-off between minimal device power consumption and acceptable mechanical stress.
Muitiobjective pressurized water reactor reload core design by nondominated genetic algorithm search
Resumo:
The design of pressurized water reactor reload cores is not only a formidable optimization problem but also, in many instances, a multiobjective problem. A genetic algorithm (GA) designed to perform true multiobjective optimization on such problems is described. Genetic algorithms simulate natural evolution. They differ from most optimization techniques by searching from one group of solutions to another, rather than from one solution to another. New solutions are generated by breeding from existing solutions. By selecting better (in a multiobjective sense) solutions as parents more often, the population can be evolved to reveal the trade-off surface between the competing objectives. An example illustrating the effectiveness of this novel method is presented and analyzed. It is found that in solving a reload design problem the algorithm evaluates a similar number of loading patterns to other state-of-the-art methods, but in the process reveals much more information about the nature of the problem being solved. The actual computational cost incurred depends: on the core simulator used; the GA itself is code independent.
Resumo:
Most behavioral tasks have time constraints for successful completion, such as catching a ball in flight. Many of these tasks require trading off the time allocated to perception and action, especially when only one of the two is possible at any time. In general, the longer we perceive, the smaller the uncertainty in perceptual estimates. However, a longer perception phase leaves less time for action, which results in less precise movements. Here we examine subjects catching a virtual ball. Critically, as soon as subjects began to move, the ball became invisible. We study how subjects trade-off sensory and movement uncertainty by deciding when to initiate their actions. We formulate this task in a probabilistic framework and show that subjects' decisions when to start moving are statistically near optimal given their individual sensory and motor uncertainties. Moreover, we accurately predict individual subject's task performance. Thus we show that subjects in a natural task are quantitatively aware of how sensory and motor variability depend on time and act so as to minimize overall task variability.
Resumo:
We describe a method to explore the configurational phase space of chemical systems. It is based on the nested sampling algorithm recently proposed by Skilling (AIP Conf. Proc. 2004, 395; J. Bayesian Anal. 2006, 1, 833) and allows us to explore the entire potential energy surface (PES) efficiently in an unbiased way. The algorithm has two parameters which directly control the trade-off between the resolution with which the space is explored and the computational cost. We demonstrate the use of nested sampling on Lennard-Jones (LJ) clusters. Nested sampling provides a straightforward approximation for the partition function; thus, evaluating expectation values of arbitrary smooth operators at arbitrary temperatures becomes a simple postprocessing step. Access to absolute free energies allows us to determine the temperature-density phase diagram for LJ cluster stability. Even for relatively small clusters, the efficiency gain over parallel tempering in calculating the heat capacity is an order of magnitude or more. Furthermore, by analyzing the topology of the resulting samples, we are able to visualize the PES in a new and illuminating way. We identify a discretely valued order parameter with basins and suprabasins of the PES, allowing a straightforward and unambiguous definition of macroscopic states of an atomistic system and the evaluation of the associated free energies.
Resumo:
On a daily basis, humans interact with a vast range of objects and tools. A class of tasks, which can pose a serious challenge to our motor skills, are those that involve manipulating objects with internal degrees of freedom, such as when folding laundry or using a lasso. Here, we use the framework of optimal feedback control to make predictions of how humans should interact with such objects. We confirm the predictions experimentally in a two-dimensional object manipulation task, in which subjects learned to control six different objects with complex dynamics. We show that the non-intuitive behavior observed when controlling objects with internal degrees of freedom can be accounted for by a simple cost function representing a trade-off between effort and accuracy. In addition to using a simple linear, point-mass optimal control model, we also used an optimal control model, which considers the non-linear dynamics of the human arm. We find that the more realistic optimal control model captures aspects of the data that cannot be accounted for by the linear model or other previous theories of motor control. The results suggest that our everyday interactions with objects can be understood by optimality principles and advocate the use of more realistic optimal control models for the study of human motor neuroscience.
Resumo:
In recent years there has been a growing interest amongst the speech research community into the use of spectral estimators which circumvent the traditional quasi-stationary assumption and provide greater time-frequency (t-f) resolution than conventional spectral estimators, such as the short time Fourier power spectrum (STFPS). One distribution in particular, the Wigner distribution (WD), has attracted considerable interest. However, experimental studies have indicated that, despite its improved t-f resolution, employing the WD as the front end of speech recognition system actually reduces recognition performance; only by explicitly re-introducing t-f smoothing into the WD are recognition rates improved. In this paper we provide an explanation for these findings. By treating the spectral estimation problem as one of optimization of a bias variance trade off, we show why additional t-f smoothing improves recognition rates, despite reducing the t-f resolution of the spectral estimator. A practical adaptive smoothing algorithm is presented, whicy attempts to match the degree of smoothing introduced into the WD with the time varying quasi-stationary regions within the speech waveform. The recognition performance of the resulting adaptively smoothed estimator is found to be comparable to that of conventional filterbank estimators, yet the average temporal sampling rate of the resulting spectral vectors is reduced by around a factor of 10. © 1992.