15 resultados para pressure sensor

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately -17.4 ppm kPa-1, while that for the second peak is approximately -6.1 ppm kPa-1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. © 2012 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a pressure sensing structure configured as a stress sensitive differential amplifier (SSDA), built on a Silicon-on-Insulator (SOI) membrane. Theoretical calculation show the significant increase in sensitivity which is expected from the pressure sensors in SSDA configuration compared to the traditional Wheatstone bridge circuit. Preliminary experimental measurements, performed on individual transistors placed on the membrane, exhibit state-the-art sensitivity values (1.45mV/mbar). © 2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel temperature and pressure sensor based on a single film bulk acoustic resonator (FBAR) is designed. This FBAR support two resonant modes, which response opposite to the change of temperature. By sealed the back cavity of a back-trench membrane type FBAR with silicon wafer, an on-chip single FBAR sensor suitable for measuring temperature and pressure simultaneously is proposed. For unsealed device, the experimental results show that the first resonant mode has a temperature coefficient of frequency (TCF) of 69.5ppm/K, and the TCF of the second mode is -8.1ppm/K. After sealed the back trench, it can be used as a pressure sensor, the pressure coefficient of frequency (PCF) for the two resonant mode is -17.4ppm/kPa and -6.1 ppm/kPa respectively, both of them being more sensitive than other existing pressure sensors. © 2013 Trans Tech Publications Ltd, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Asian tsunami of 26 December 2004 killed over 220 000 people and devastated coastal structures, including many thousands of traditional brick-built homes. This paper presents the results of model tests that compare the impact of a tsunami wave on a typical coastal house with that on a new tsunami resistant design developed in the USA and now built in Sri Lanka Digital images recorded during the test reveal how the tsunami wave passed through the new house design without damaging it but severely damaged the typical coastal house. Pressure sensor results also provided further insight into tsunami wave loading, indicating that the established Japanese method significantly underestimates maximum impact load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A potentiometric device based on interfacing a solid electrolyte oxygen ion conductor with a thin platinum film acts as a robust, reproducible sensor for the detection of hydrocarbons in high- or ultrahigh-vacuum environments. Sensitivities in the order of approximately 5 x 10(-10) mbar are achievable under open circuit conditions, with good selectivity for discrimination between n-butane on one hand and toluene, n-octane, n-hexane, and 1-butene on the other hand. The sensor's sensitivity may be tuned by operating under constant current (closed circuit) conditions; injection of anodic current is also a very effective means of restoring a clean sensing surface at any desired point. XPS data and potentiometric measurements confirm the proposed mode of sensing action: the steady-state coverage of Oa, which sets the potential of the Pt sensing electrode, is determined by the partial pressure and dissociative sticking probability of the impinging hydrocarbon. The principles established here provide the basis for a viable, inherently flexible, and promising means for the sensitive and selective detection of hydrocarbons under demanding conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-body sensor systems for sport are challenging since the sensors must be lightweight and small to avoid discomfort, and yet robust and highly accurate to withstand and capture the fast movements associated with sport. In this work, we detail our experience of building such an on-body system for track athletes. The paper describes the design, implementation and deployment of an on-body sensor system for sprint training sessions. We autonomously profile sprints to derive quantitative metrics to improve training sessions. Inexpensive Force Sensitive Resistors (FSRs) are used to capture foot events that are subsequently analysed and presented back to the coach. We show how to identify periods of sprinting from the FSR data and how to compute metrics such as ground contact time. We evaluate our system using force plates and show that millisecond-level accuracy is achievable when estimating contact times. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan-Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. © 2012 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the intelligence and the functionality of microrobots increase, there is a growing need to incorporate sensors into these robots. In order to limit the outer dimensions of these microsystems, this research investigates sensors that can be integrated efficiently into microactuators. Here, a pneumatic piston-cylinder microactuator with an integrated inductive position sensor was developed. The main advantage of pneumatic actuators is their high force and power density at microscale. The outside diameter of the actuator is 1.3 mm and the length is 15 mm. The stroke of the actuator is 12 mm, and the actuation force is 1 N at a supply pressure of 1.5 MPa. The position sensor consists of two coils wound around the cylinder of the actuator. The measurement principle is based on the change in coupling factor between the coils as the piston moves in the actuator. The sensor is extremely small since one layer of 25 μm copper wire is sufficient to achieve an accuracy of 10 μm over the total stroke. Position tests with a PI controller and a sliding mode controller showed that the actuator is able to position with an accuracy up to 30 μm. Such positioning systems offer great opportunities for all devices that need to control a large number of degrees of freedom in a restricted volume. © 2007 Elsevier B.V. All rights reserved.