7 resultados para predictors of return to work
em Cambridge University Engineering Department Publications Database
Resumo:
The goal of this work was to investigate stability in relation to the magnitude and direction of forces applied by the hand. The endpoint stiffness and joint stiffness of the arm were measured during a postural task in which subjects exerted up to 30% maximum voluntary force in each of four directions while controlling the position of the hand. All four coefficients of the joint stiffness matrix were found to vary linearly with both elbow and shoulder torque. This contrasts with the results of a previous study, which employed a force control task and concluded that the joint stiffness coefficients varied linearly with either shoulder or elbow torque but not both. Joint stiffness was transformed into endpoint stiffness to compare the effect on stability as endpoint force increased. When the joint stiffness coefficients were modeled as varying with the net torque at only one joint, as in the previous study, we found that hand position became unstable if endpoint force exceeded about 22 N in a specific direction. This did not occur when the joint stiffness coefficients were modeled as varying with the net torque at both joints, as in the present study. Rather, hand position became increasingly more stable as endpoint force increased for all directions of applied force. Our analysis suggests that co-contraction of biarticular muscles was primarily responsible for the increased stability. This clearly demonstrates how the central nervous system can selectively adapt the impedance of the arm in a specific direction to stabilize hand position when the force applied by the hand has a destabilizing effect in that direction.
Resumo:
The Internet of Things (IOT) concept and enabling technologies such as RFID offer the prospect of linking the real world of physical objects with the virtual world of information technology to improve visibility and traceability information within supply chains and across the entire lifecycles of products, as well as enabling more intuitive interactions and greater automation possibilities. There is a huge potential for savings through process optimization and profit generation within the IOT, but the sharing of financial benefits across companies remains an unsolved issue. Existing approaches towards sharing of costs and benefits have failed to scale so far. The integration of payment solutions into the IOT architecture could solve this problem. We have reviewed different possible levels of integration. Multiple payment solutions have been researched. Finally we have developed a model that meets the requirements of the IOT in relation to openness and scalability. It supports both hardware-centric and software-centric approaches to integration of payment solutions with the IOT. Different requirements concerning payment solutions within the IOT have been defined and considered in the proposed model. Possible solution providers include telcos, e-payment service providers and new players such as banks and standardization bodies. The proposed model of integrating the Internet of Things with payment solutions will lower the barrier to invoicing for the more granular visibility information generated using the IOT. Thus, it has the potential to enable recovery of the necessary investments in IOT infrastructure and accelerate adoption of the IOT, especially for projects that are only viable when multiple benefits throughout the supply chain need to be accumulated in order to achieve a Return on Investment (ROI). In a long-term perspective, it may enable IT-departments to become profit centres instead of cost centres. © 2010 - IOS Press and the authors. All rights reserved.
Resumo:
Power consumption of a multi-GHz local clock driver is reduced by returning energy stored in the clock-tree load capacitance back to the on-chip power-distribution grid. We call this type of return energy recycling. To achieve a nearly square clock waveform, the energy is transferred in a non-resonant way using an on-chip inductor in a configuration resembling a full-bridge DC-DC converter. A zero-voltage switching technique is implemented in the clock driver to reduce dynamic power loss associated with the high switching frequencies. A prototype implemented in 90 nm CMOS shows a power savings of 35% at 4 GHz. The area needed for the inductor in this new clock driver is about 6% of a local clock region. © 2006 IEEE.
Resumo:
This paper discusses innovations in curriculum development in the Department of Engineering at the University of Cambridge as a participant in the Teaching for Learning Network (TFLN), a teaching and learning development initiative funded by the Cambridge-MIT Institute a pedagogic collaboration and brokerage network. A year-long research and development project investigated the practical experiences through which students traditionally explore engineering disciplines, apply and extend the knowledge gained in lectures and other settings, and begin to develop their professional expertise. The research project evaluated current practice in these sessions and developed an evidence-base to identify requirements for new activities, student support and staff development. The evidence collected included a novel student 'practice-value' survey highlighting effective practice and areas of concern, classroom observation of practicals, semi-structured interviews with staff, a student focus group and informal discussions with staff. Analysis of the data identified three potentially 'high-leverage' strategies for improvement: development of a more integrated teaching framework, within which practical work could be contextualised in relation to other learning; a more transparent and integrated conceptual framework where theory and practice were more closely linked; development of practical work more reflective of the complex problems facing professional engineers. This paper sets out key elements of the evidence collected and the changes that have been informed by this evidence and analysis, leading to the creation of a suite of integrated practical sessions carefully linked to other course elements and reinforcing central concepts in engineering, accompanied by a training and support programme for teaching staff.
Resumo:
This work concerns the prediction of the response of an uncertain structure to a load of short duration. Assuming an ensemble of structures with small random variations about a nominal form, a mean impulse response can be found using only the modal density of the structure. The mean impulse response turns out to be the same as the response of an infinite structure: the response is calculated by taking into account the direct field only, without reflections. Considering the short duration of an impulsive loading, the approach is reasonable before the effect of the reverberant field becomes important. The convolution between the mean impulse response and the shock loading is solved in discrete time to calculate the response at the driving point and at remote points. Experimental and numerical examples are presented to validate the theory presented for simple structures such as beams, plates, and cylinders.
Resumo:
Roll-to-roll (R2R) gravure exhibits significant advantages such as high precision and throughput for the printing of photoactive and conductive materials and the fabrication of flexible organic electronics such as organic photovoltaics (OPVs). Since the photoactive layer is the core of the OPV, it is important to investigate and finally control the process parameters and mechanisms that define the film morphology in a R2R process. The scope of this work is to study the effect of the R2R gravure printing and drying process on the nanomorphology and nanostructure of the photoactive P3HT:PCBM thin films printed on PEDOT:PSS electrodes towards the fabrication of indium tin oxide (ITO)-free flexible OPVs. In order to achieve this, P3HT:PCBM blends of different concentration were R2R printed under various speeds on the PEDOT:PSS layers. Due to the limited drying time during the rolling, an amount of solvent remains in the P3HT:PCBM films and the slow-drying process takes place which leads to the vertical and lateral phase separation, according to the Spectroscopic Ellipsometry and Atomic Force Microscopy analysis. The enhanced slow-drying leads to stronger phase separation, larger P3HT crystallites according to the Grazing Incidence X-Ray Diffraction data and to weaker mechanical response as it was shown by the nanoindentation creep. However, in the surface of the films the P3HT crystallization is controlled by the impinged hot air during the drying, where the more the drying time the larger the surface P3HT crystallites. The integration of the printed P3HT:PCBM and PEDOT:PSS layers in an OPV device underlined the feasibility of fabricating ITO-free flexible OPVs by R2R gravure processes. © 2013 Elsevier B.V.