30 resultados para power output

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BIPV (building integrated photovoltaics) has progressed in the past years and become an element to be considered in city planning. BIPV has significant influence on microclimate in urban environments and the performance of BIPV is also affected by urban climate. The thermal model and electrical performance model of ventilated BIPV are combined to predict PV temperature and PV power output in Tianjin, China. Then, by using dynamic building energy model, the building cooling load for installing BIPV is calculated. A multi-layer model AUSSSM of urban canopy layer is used to assess the effect of BIPV on the Urban Heat Island (UHI). The simulation results show that in comparison with the conventional roof, the total building cooling load with ventilation PV roof may be decreased by 10%. The UHI effect after using BIPV relies on the surface absorptivity of original building. In this case, the daily total PV electricity output in urban areas may be reduced by 13% compared with the suburban areas due to UHI and solar radiation attenuation because of urban air pollution. The calculation results reveal that it is necessary to pay attention to and further analyze interactions between BIPV and microdimate in urban environments to decrease urban pollution, improve BIPV performance and reduce cooling load. Copyright © 2006 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature. © 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is generally recognized that BIPV (building integrated photovoltaics) has the potential to become a major source of renewable energy in the urban environment. The actual output of a PV module in the field is a function of orientation, total irradiance, spectral irradiance, wind speed, air temperature, soiling and various system-related losses. In urban areas, the attenuation of solar radiation due to air pollution is obvious, and the solar spectral content subsequently changes. The urban air temperature is higher than that in the surrounding countryside, and the wind speed in urban areas is usually less than that in rural areas. Three different models of PV power are used to investigate the effect of urban climate on PV performance. The results show that the dimming of solar radiation in the urban environment is the main reason for the decrease of PV module output using the climatic data of urban and rural sites in Mexico City for year 2003. The urban PV conversion efficiency is higher than that of the rural PV system because the PV module temperature in the urban areas is slightly lower than that in the rural areas in the case. The DC power output of PV seems to be underestimated if the spectral response of PV in the urban environment is not taken into account based on the urban hourly meteorological data of Sao Paulo for year 2004. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BIPV(Building Integrated Photovoltaics) has progressed in the past years and become an element to be considered in city planning. BIPV has influence on microclimate in urban environments and the performance of BIPV is also affected by urban climate. The effect of BIPV on urban microclimate can be summarized under the following four aspects. The change of absorptivity and emissivity from original building surface to PV will change urban radiation balance. After installation of PV, building cooling load will be reduced because of PV shading effect, so urban anthropogenic heat also decreases to some extent. Because PV can reduce carbon dioxide emissions which is one of the reasons for urban heat island, BIPV is useful to mitigate this phenomena. The anthropogenic heat will alter after using BIPV, because partial replacement of fossil fuel means to change sensible heat from fossil fuel to solar energy. Different urban microclimate may have various effects on BIPV performance that can be analyzed from two perspectives. Firstly, BIPV performance may decline with the increase of air temperature in densely built areas because many factors in urban areas cause higher temperature than that of the surrounding countryside. Secondly, the change of solar irradiance at the ground level under urban air pollution will lead to the variation of BIPV performance because total solar irradiance usually is reduced and each solar cell has a different spectral response characteristic. The thermal model and performance model of ventilated BIPV according to actual meteorologic data in Tianjin(China) are combined to predict PV temperature and power output in the city of Tianjin. Then, using dynamic building energy model, cooling load is calculated after BIPV installation. The calculation made based in Tianjin shows that it is necessary to pay attention to and further analyze interaction between them to decrease urban pollution, improve BIPV Performance and reduce colling load. Copyright © 2005 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nuclear power generation offers a reliable, low-impact and large-scale alternative to fossil fuels. However, concerns exist over the safety and sustainability of this method of power production, and it remains unpopular with some governments and pressure groups throughout the world. Fast thorium fuelled accelerator-driven sub-critical reactors (ADSRs) offer a possible route to providing further re-assurance regarding these concerns on account of their properties of enhanced safety through sub-critical operation combined with reduced actinide waste production from the thorium fuel source. The appropriate sub-critical margin at which these reactors should operate is the subject of continued debate. Commercial interests favour a small sub-critical margin in order to minimise the size of the accelerator needed for a given power output, whilst enhanced safety would be better satisfied through larger sub-critical margins to further minimise the possibility of a criticality excursion. Against this background, this paper examines some of the issues affecting reactor safety inherent within thorium fuel sources resulting from the essential Th90232→Th90233→Pa91233→U92233 breeding chain. Differences in the decay half-lives and fission and capture cross-sections of 233Pa and 233U can result in significant changes in the reactivity of the fuel following changes in the reactor power. Reactor operation is represented using a homogeneous lumped fast reactor model that can simulate the evolution of actinides and reactivity variations to first-order accuracy. The reactivity of the fuel is shown to increase significantly following a loss of power to the accelerator. Where the sub-critical operating margins are small this can result in a criticality excursion unless some form of additional intervention is made, for example through the insertion of control rods. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential of palm methyl esters (PME) as an alternative fuel for gas turbines is investigated using a swirl burner. The main air flow is preheated to 623 K, and a swirling spray flame is established at atmospheric pressure. The spray combustion characteristics of PME are compared to diesel and Jet-A1 fuel under the same burner power output of 6 kW. Investigation of the fuel atomizing characteristics using phase Doppler anemometry (PDA) shows that most droplets are distributed within the flame reaction zone region. PME droplets exhibit higher Sautermean diameter (SMD) values than baseline fuels, and thus higher droplet penetration length and longer evaporation timescales. The PME swirl flame presents a different visible flame reaction zone while combusting with low luminosity and produces no soot. NO x emissions per unit mass of fuel and per unit energy are reduced by using PME relative to those of conventional fuels. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model gas turbine burner was employed to investigate spray flames established under globally lean, continuous, swirling conditions. Two types of fuel were used to generate liquid spray flames: palm biodiesel and Jet-A1. The main swirling air flow was preheated to 350°C prior to mixing with airblast-atomized fuel droplets at atmospheric pressure. The global flame structure of flame and flow field were investigated at the fixed power output of 6 kW. Flame chemiluminescence imaging technique was employed to investigate the flame reaction zones, while particle imaging velocimetry (PIV) was utilized to measure the flow field within the combustor. The flow fields of both flames are almost identical despite some differences in the flame reaction zones. © (2013) Trans Tech Publications, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spray combustion characteristics of rapeseed methyl esters (RME) were compared to Jet-A1 fuel using a gas turbine type combustor. The swirling spray flames for both fuels were established at a constant power output of 6 kW. The main swirling air flow was preheated to 350 C prior to coaxially enveloping the airblast-atomized liquid fuel spray at atmospheric pressure. Investigation of the fundamental spray combustion was performed via measurements of the fuel droplet sizes and velocities, gas phase flow fields and flame reaction zones. The spray flame droplets and flow fields in the combustors were characterised using phase Doppler anemometry (PDA) and particle imaging velocimetry (PIV) respectively. Flame chemiluminescence imaging was employed to identify the flame reaction zones. The highest droplet concentration zone extends along a 30 angle from the symmetry axis, inside the flame zone. Only small droplets(<17 μ) (<17 μm)are found around the centreline region, while larger droplets are found at the edge of the spray outside the flame reaction zone. RME exhibits spray characteristics similar to Jet-A1 but with droplet concentration and volume fluxes four times higher, consistent with the expected longer droplet evaporation timescale. The flow field characteristics for both RME and Jet-A1 spray flames are very similar despite the significantly different visible characteristics of the flame reaction zones. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resonant-based vibration harvesters have conventionally relied upon accessing the fundamental mode of directly excited resonance to maximize the conversion efficiency of mechanical-to-electrical power transduction. This paper explores the use of parametric resonance, which unlike the former, the resonant-induced amplitude growth, is not limited by linear damping and wherein can potentially offer higher and broader nonlinear peaks. A numerical model has been constructed to demonstrate the potential improvements over the convention. Despite the promising potential, a damping-dependent initiation threshold amplitude has to be attained prior to accessing this alternative resonant phenomenon. Design approaches have been explored to passively reduce this initiation threshold. Furthermore, three representative MEMS designs were fabricated with both 25 and 10 μm thick device silicon. The devices include electrostatic cantilever-based harvesters, with and without the additional design modification to overcome initiation threshold amplitude. The optimum performance was recorded for the 25 μm thick threshold-aided MEMS prototype with device volume ∼0.147 mm3. When driven at 4.2 ms -2, this prototype demonstrated a peak power output of 10.7 nW at the fundamental mode of resonance and 156 nW at the principal parametric resonance, as well as a 23-fold decrease in initiation threshold over the purely parametric prototype. An approximate doubling of the half-power bandwidth was also observed for the parametrically excited scenario. © 2013 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical amplification effect of parametric resonance has the potential to outperform direct resonance by over an order of magnitude in terms of power output. However, the excitation must first overcome the damping-dependent initiation threshold amplitude prior to accessing this more profitable region. In addition to activating the principal (1st order) parametric resonance at twice the natural frequency ω0, higher orders of parametric resonance may be accessed when the excitation frequency is in the vicinity of 2ω0/n for integer n. Together with the passive design approaches previously developed to reduce the initiation threshold to access the principal parametric resonance, vacuum packaging (< 10 torr) is employed to further reduce the threshold and unveil the higher orders. A vacuum packaged MEMS electrostatic harvester (0.278 mm3) exhibited 4 and 5 parametric resonance peaks at room pressure and vacuum respectively when scanned up to 10 g. At 5.1 ms-2, a peak power output of 20.8 nW and 166 nW is recorded for direct and principal parametric resonance respectively at atmospheric pressure; while a peak power output of 60.9 nW and 324 nW is observed for the respective resonant peaks in vacuum. Additionally, unlike direct resonance, the operational frequency bandwidth of parametric resonance broadens with lower damping. © Published under licence by IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the arena of vibration energy harvesting, the key technical challenges continue to be low power density and narrow operational frequency bandwidth. While the convention has relied upon the activation of the fundamental mode of resonance through direct excitation, this article explores a new paradigm through the employment of parametric resonance. Unlike the former, oscillatory amplitude growth is not limited due to linear damping. Therefore, the power output can potentially build up to higher levels. Additionally, it is the onset of non-linearity that eventually limits parametric resonance; hence, this approach can also potentially broaden the operating frequency range. Theoretical prediction and numerical modelling have suggested an order higher in oscillatory amplitude growth. An experimental macro-sized electromagnetic prototype (practical volume of ∼1800 cm3) when driven into parametric resonance, has demonstrated around 50% increase in half power band and an order of magnitude higher peak power density normalised against input acceleration squared (293 μW cm-3 m-2 s4 with 171.5 mW at 0.57 m s-2) in contrast to the same prototype directly driven at fundamental resonance (36.5 μW cm-3 m-2 s4 with 27.75 mW at 0.65 m s-2). This figure suggests promising potentials while comparing with current state-of-the-art macro-sized counterparts, such as Perpetuum's PMG-17 (119 μW cm-3 m-2 s4). © The Author(s) 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A vibration energy harvester designed to access parametric resonance can potentially outperform the conventional direct resonant approach in terms of power output achievable given the same drive acceleration. Although linear damping does not limit the resonant growth of parametric resonance, a damping dependent initiation threshold amplitude exists and limits its onset. Design approaches have been explored in this paper to passively overcome this limitation in order to practically realize and exploit the potential advantages. Two distinct design routes have been explored, namely an intrinsically lower threshold through a pendulum-lever configuration and amplification of base excitation fed into the parametric resonator through a cantilever-initial-spring configuration. Experimental results of the parametric resonant harvesters with these additional enabling designs demonstrated an initiation threshold up to an order of magnitude lower than otherwise, while attaining a much higher power peak than direct resonance. © 2014 IOP Publishing Ltd.