2 resultados para posters
em Cambridge University Engineering Department Publications Database
Resumo:
A direct comparison between time resolved PLIF measurements of OH and two dimensional slices from a full three dimensional DNS data set of turbulent premixed flame kernels in lean methane/air mixture was presented. The local flame structure and the degree of flame wrinkling were examined in response to differing turbulence intensities and turbulent Reynolds numbers. Simulations were performed using the SEGA DNS code, which is based on the solution of the compressible Navier Stokes, species, and energy equations for a lean hydrocarbon mixture. For the OH PLIF measurements, a cluster of four Nd:YAG laser was fired sequentially at high repetition rates and used to pump a dye laser. The frequency doubled laser beam was formed into a sheet of 40 mm height using a cylindrical telescope. The combination of PLIF and DNS has been demonstrated as a powerful tool for flame analysis. This research will form the basis for the development of sub-grid-scale (SGS) models for LES of lean-premixed combustion systems such as gas turbines. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).
Resumo:
Creating a realistic talking head, which given an arbitrary text as input generates a realistic looking face speaking the text, has been a long standing research challenge. Talking heads which cannot express emotion have been made to look very realistic by using concatenative approaches [Wang et al. 2011], however allowing the head to express emotion creates a much more challenging problem and model based approaches have shown promise in this area. While 2D talking heads currently look more realistic than their 3D counterparts, they are limited both in the range of poses they can express and in the lighting conditions that they can be rendered under. Previous attempts to produce videorealistic 3D expressive talking heads [Cao et al. 2005] have produced encouraging results but not yet achieved the level of realism of their 2D counterparts.