76 resultados para post-deformation annealing

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The achievement of the desirable morphology at the nanometer scale of bulk heterojunctions consisting of a conjugated polymer with fullerene derivatives is a prerequisite in order to optimize the power conversion efficiency of organic solar cells. The various experimental conditions such as the choice of solvent, drying rates and annealing have been found to significantly affect the blend morphology and the final performance of the photovoltaic device. In this work, we focus on the effects of post deposition thermal annealing at 140 °C on the blend morphology, the optical and structural properties of bulk heterojunctions that consist of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM). The post thermal annealing modifies the distribution of the P3HT and the PCBM inside the blend films, as it has been found by Spectroscopic Ellipsometry studies in the visible to far-ultraviolet spectral range. Phase separation was identified by AFM and GIXRD as a result of a slow drying process which took place after the spin coating process. The increase of the annealing time resulted to a significant increase of the P3HT crystallinity at the top regions of the blend films. © 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic strain imaging. An efficient approach may incorporate a tracking strategy whereby each estimate is initially obtained from its neighbours' displacements and then refined through a localized search. This increases the accuracy and reduces the computational expense compared with exhaustive search. However, simple tracking strategies fail when the target displacement map exhibits complex structure. For example, there may be discontinuities and regions of indeterminate displacement caused by decorrelation between the pre- and post-deformation radio frequency (RF) echo signals. This paper introduces a novel displacement tracking algorithm, with a search strategy guided by a data quality indicator. Comparisons with existing methods show that the proposed algorithm is more robust when the displacement distribution is challenging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sidewall facets of GaAs nanowires (NWs) were studied. It has been found that the sidewalls of GaAs NWs grown at 450 °C are {112} facets. However, the sidewalls of GaAs NWs start to become {110} during the postannealing at 650 °C for 30 min. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible-far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution - namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) - has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells. © 2012 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit. The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure. The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant. © 2008 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study [M. Hameed, J. Fluid Mech. 594, 307 (2008)] the authors investigated the influence of insoluble surfactant on the evolution of a stretched, inviscid bubble surrounded by a viscous fluid via direct numerical simulation of the Navier-Stokes equations, and showed that the presence of surfactant can cause the bubble to contract and form a quasisteady slender thread connecting parent bubbles, instead of proceeding directly toward pinch-off as occurs for a surfactant-free bubble. Insoluble surfactant significantly retards pinch-off and the thread is stabilized by a balance between internal pressure and reduced capillary pressure due to a high concentration of surfactant that develops during the initial stage of contraction. In the present study we investigate the influence of surfactant solubility on thread formation. The adsorption-desorption kinetics for solubility is in the diffusion controlled regime. A long-wave model for the evolution of a capillary jet is also studied in the Stokes flow limit, and shows dynamics that are similar to those of the evolving bubble. With soluble surfactant, depending on parameter values, a slender thread forms but can pinch-off later due to exchange of surfactant between the interface and exterior bulk flow. © 2009 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium-based composites, reinforced with low volume fractions of whiskers and small particles, have been formed by a powder route. The materials have been tested in tension, and the microstructures examined using transmission electron microscopy. The whisker composites showed an improvement in flow stress over the particulate composites, and this was linked to an initially enhanced work-hardening rate in the whisker composites. The overall dislocation densities were estimated to be somewhat higher in the whisker composites than the particulate composites, but in the early stages of deformation the distribution was rather different, with deformation in the whisker material being far more localized and inhomogeneous. This factor, together with differences in the internal stress distribution in the materials, is used to explain the difference in mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous investigations have unveiled size effects in the strength of metallic foams under simple shear - the shear strength increases with diminishing specimen size, a phenomena similar to that shown by Fleck et al. (Acta Mat., 1994, Vol. 42, p. 475.) on the torsion tests of copper wires of various radii. In this study, experimental study of the constrained deformation of a foam layer sandwiched between two steel plates has been conducted. The sandwiched plates are subjected to combined shear and normal loading. It is found that measured yield loci of metallic foams in the normal and shear stress space corresponding to various foam layer thicknesses are self-similar in shape but their size increases as the foam layer thickness decreases. Moreover, the strains profiles across the foam layer thickness are parabolic instead of uniform; their values increase from the interfaces between the foam layer and the steel plates and reach their maximum in the middle of the foam layer, yielding boundary layers adjacent to the steel plates. In order to further explore the origin of observed size effects, micromechanics models have been developed, with the foam layer represented by regular and irregular honeycombs. Though the regular honeycomb model is seen to underestimate the size effects, the irregular honeycomb model faithfully captures the observed features of the constrained deformation of metallic foams.