69 resultados para post preparation

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 Å/min over a 4″ diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its sp3 content, mass density, intrinsic stress, hydrogen content, C-H bonding, Raman spectra, optical gap, surface roughness and friction coefficient. The results obtained indicated that the film properties were maximized at an ion energy of approximately 167 eV, corresponding to an energy per daughter carbon ion of 76 eV. The relationship between the incident ion energy and film densification was also explained in terms of the subsurface implantation of carbon ions into the growing film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ densification is a popular technique to protect shallow foundations from the effects of earthquake-induced liquefaction, current design being based on semiempirical rules. Poor understanding of the mechanisms governing the performance of soil-structure systems during and after earthquakes inhibits the use of narrow densified zones, which could contribute to optimise the use of densification if the increase in post-earthquake settlement is restrained. Therefore this paper investigates the long-term behaviour of a footing built on densified ground and surrounded by liquefiable ground, centrifuge experiments being used to identify the mechanisms occurring in the ground during and after a seismic simulation. The differential excess pore pressure generated in the ground during the shaking and the processes of vertical stress concentration and subsequent redistribution observed under the footing dominate the system behaviour. The results enlighten the complex mechanisms determining the post-earthquake settlement when densification is carried out to mitigate liquefaction effects. The improvement in performance resulting from widening the zone of densification is rationally explained which encourages the development of new design concepts that may enhance the future use of densification as a liquefaction resistance measure. © 2007 Thomas Telford Ltd.