5 resultados para plug in

em Cambridge University Engineering Department Publications Database


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many researchers and industry observers claim that electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) could provide vehicle-to-grid (V2G) bulk energy and ancillary services to an electricity network. This work quantified the impact on various battery characteristics whilst providing such services. The sensitivity of the impact of V2G services on battery degradation was assessed for EV and PHEV for different battery capacities, charging regimes, and battery depth of discharge. Battery degradation was found to be most dependent on energy throughput for both the EV and PHEV powertrains, but was most sensitive to charging regime (for EVs) and battery capacity (for PHEVs). When providing ancillary services, battery degradation in both powertrains was most sensitive to individual vehicle battery depth of discharge. Degradation arising from both bulk energy and ancillary services could be minimised by reducing the battery capacity of the vehicle, restricting the number of hours connected and reducing the depth of discharge of each vehicle for ancillary services. Regardless, best case minimum impacts of providing V2G services are severe such as to require multiple battery pack replacements over the vehicle lifetime. © 2013 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work analysed the cost-effectiveness of avoiding carbon dioxide (CO2) emissions using advanced internal combustion engines, hybrids, plug-in hybrids, fuel cell vehicles and electric vehicles across the nine UK passenger vehicles segments. Across all vehicle types and powertrain groups, minimum installed motive power was dependent most on the time to accelerate from zero to 96.6km/h (60mph). Hybridising the powertrain reduced the difference in energy use between vehicles with slow (t z - 60 > 8 s) and fast acceleration (t z - 60 < 8 s) times. The cost premium associated with advanced powertrains was dependent most on the powertrain chosen, rather than the performance required. Improving non-powertrain components reduced vehicle road load and allowed total motive capacity to decrease by 17%, energy use by 11%, manufacturing cost premiums by 13% and CO2 emissions abatement costs by 15%. All vehicles with advanced internal combustion engines, most hybrid and plug-in hybrid powertrains reduced net CO2 emissions and had lower lifetime operating costs than the respective segment reference vehicle. Most powertrains using fuel cells and all electric vehicles had positive CO2 emissions abatement costs. However, only vehicles using advanced internal combustion engines and parallel hybrid vehicles may be attractive to consumers by the fuel savings offsetting increases in vehicle cost within two years. This work demonstrates that fuel savings are possible relative to today's fleet, but indicates that the most cost-effective way of reducing fuel consumption and CO2 emissions is by advanced combustion technologies and hybridisation with a parallel topology. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a new way to perform hydrodynamic chromatography (HDC) for the size separation of particles based on a unique recirculating flow pattern. Pressure-driven (PF) and electro-osmotic flows (EOF) are opposed in narrow glass microchannels that expand at both ends. The resulting bidirectional flow turns into recirculating flow because of nonuniform microchannel dimensions. This hydrodynamic effect, combined with the electrokinetic migration of the particles themselves, results in a trapping phenomenon, which we have termed flow-induced electrokinetic trapping (FIET). In this paper, we exploit recirculating flow and FIET to perform a size-based separation of samples of microparticles trapped in a short separation channel using a HDC approach. Because these particles have the same charge (same zeta potential), they exhibit the same electrophoretic mobility, but they can be separated according to size in the recirculating flow. While trapped, particles have a net drift velocity toward the low-pressure end of the channel. When, because of a change in the externally applied PF or electric field, the sign of the net drift velocity reverses, particles can escape the separation channel in the direction of EOF. Larger particles exhibit a larger net drift velocity opposing EOF, so that the smaller particles escape the separation channel first. In the example presented here, a sample plug containing 2.33 and 2.82 microm polymer particles was introduced from the inlet into a 3-mm-long separation channel and trapped. Through tuning of the electric field with respect to the applied PF, the particles could be separated, with the advantage that larger particles remained trapped. The separation of particles with less than 500 nm differences in diameter was performed with an analytical resolution comparable to that of baseline separation in chromatography. When the sample was not trapped in the separation channel but located further downstream, separations could be carried out continuously rather than in batch. Smaller particles could successfully pass through the separation channel, and particles were separated by size. One of the main advantages of exploiting FIET for HDC is that this method can be applied in quite short (a few millimeters) channel geometries. This is in great contrast to examples published to date for the separation of nanoparticles in much longer micro- and nanochannels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ions generated during combustion have been used in three ways to give qualitative combustion information. Langmuir type probes have been inserted into the combustion chamber opposite the spark plug location. The centre electrode of the sparking plug itself has been used to produce an ionisation signal from the slightly ionised gases remaining after the flame front has departed. The spark discharge at ignition time has been used as an anemometer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an insight into leather manufacturing processes, depicting peculiarities and challenges faced by leather industry. An analysis of this industry reveals the need for a new approach to optimize the productivity of leather processing operations, ensure consistent quality of leather, mitigate the adverse health effects in tannery workers exposed to chemicals and comply with environmental regulation. Holonic manufacturing systems (HMS) paradigm represent a bottom-up distributed approach that provides stability, adaptability, efficient use of resources and a plug and operate functionality to the manufacturing system. A vision of how HMS might operate in a tannery is illustrated presenting the rationales behind its application in this industry. © 2013 Springer-Verlag.