13 resultados para plasma heating by laser

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of all laser-based processes, laser machining has received little attention compared with others such as cutting, welding, heat treatment and cleaning. The reasons for this are unclear, although much can be gained from the development of an effcient laser machining process capable of processing diffcult materials such as high-performance steels and aerospace alloys. Existing laser machining processes selectively remove material by melt shearing and evaporation. Removing material by melting and evaporation leads to very low wall plug effciencies, and the process has difficulty competing with conventional mechanical removal methods. Adopting a laser machining solution for some materials offers the best prospects of effcient manufacturing operations. This paper presents a new laser machining process that relies on melt shear removal provided by a vertical high-speed gas vortex. Experimental and theoretical studies of a simple machining geometry have identifed a stable vortex regime that can be used to remove laser-generated melt effectively. The resultant combination of laser and vortex is employed in machining trials on 43A carbon steel. Results have shown that laser slot machining can be performed in a stable regime at speeds up to 150mm/min with slot depths of 4mm at an incident CO2 laser power level of 600 W. Slot forming mechanisms and process variables are discussed for the case of steel. Methods of bulk machining through multislot machining strategies are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article explores the possibility of using a laser to remove toner-print from office paper. Removal of print would allow paper to be re-used instead of being recycled or disposed into a landfill. This might reduce climate change gas emissions per tonne of office paper by between 45% and 95%. Although there is little previous research on the area, a number of related articles on paper conservation methods using laser radiation can be found in literature. Different authors have studied the effects of laser energy on blank paper and its application for cleaning soiled paper. However, this study examines toner-print removal from paper by laser ablation. In this article a laser in the visible range is applied to a single toner-paper combination with a range of energy fluences. Results are evaluated by means of colour measurements under the L*a*b* colour space and SEM images. Analysis of the samples reveals that there are parameters under which it is possible to remove toner from paper without causing significant discolouration or damage to the substrate. This means that it is technically possible to remove toner-print for paper re-use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-pressure methane plasma generated by electron cyclotron wave resonance was characterized in terms of electron temperature, plasma density and composition. Methane plasmas were commonly used in the deposition of hydrogenated amorphous carbon thin films. Little variation in the plasma chemistry was observed by mass spectrometry measurements of the gas phase with increasing electron temperature. The results show that direct electron-impact reactions exert greater influence on the plasma chemistry than secondary ion-neutral reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Picosecond pulsed laser (10.4 ps, 1064 nm, 5 and 50 kHz) patterning studies were performed, of PEDOT:PSS thin films of varying thickness deposited by spin coating on glass substrates, by ablating the films or by changing locally by laser irradiation the optical and electrical properties of the polymer. From a detailed observation of the morphology of single pulse ablated holes on the surfaces of the films, in combination with simple calculations, it is concluded that photomechanical ablation is the likely ablation mechanism of the films. The single pulse ablation thresholds were measured equal to 0.13-0.18 J/cm 2 for films with thicknesses in the region of ∼100-600 nm. The implications on ablation line patterning of the films using different fluences, scanning speeds and pulse repetition rates, were investigated systematically. Laser irradiation of the films before ablation induces a metal-insulator transition of the polymer because of the formation of charge localization due to a possible creation of molecular disorder in the polymer and shortening of its conjugation length. © 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The creation and evolution of millimeter-sized droplets of a Newtonian liquid generated on demand by the action of pressure pulses were studied experimentally and simulated numerically. The velocity response within a model, large-scale printhead was recorded by laser Doppler anemometry, and the waveform was used in Lagrangian finite-element simulations as an input. Droplet shapes and positions were observed by shadowgraphy and compared with their numerically obtained analogues. © 2011 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations of a tethered meteorological balloon show that a strong vibration coupling exists between axial forcing of the tether and ovalling deformations of the balloon. Such coupling may lead to system instabilities and fatigue failure in a tethered-balloon system. This is particularly relevant in the case of a balloon launched from a moving vessel, as is proposed as part of the SPICE geoengineering project. This paper investigates the vibration characteristics of a tethered, spherical balloon using a simple analytical model: a tensioned, spherical membrane attached to a spring. The analytical solution for the natural frequencies and modeshapes of this system is compared to transfer functions obtained by laser vibrometry. These results are then used to determine the most suitable method of modelling the dynamic response of a tethered balloon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells. We combined quantitation of live data, genetic and mechanical perturbation and cell biology, to investigate how mechanical properties and contraction rate emerge from cytoskeletal activity. We found that a decrease in Myosin phosphorylation induces a fluidization of amnioserosa cells which become more compliant. Conversely, an increase in Myosin phosphorylation and an increase in actin linear polymerization induce a solidification of cells. Contrary to expectation, these two perturbations have an opposite effect on the strain rate of cells during DC. While an increase in actin polymerization increases the contraction rate of amnioserosa cells, an increase in Myosin phosphorylation gives rise to cells that contract very slowly. The quantification of how the perturbation induced by laser ablation decays throughout the tissue revealed that the tissue in these two mutant backgrounds reacts very differently. We suggest that the differences in the strain rate of cells in situations where Myosin activity or actin polymerization is increased arise from changes in how the contractile forces are transmitted and coordinated across the tissue through ECadherin-mediated adhesion. Altogether, our results show that there is an optimal level of Myosin activity to generate efficient contraction and suggest that the architecture of the actin cytoskeleton and the dynamics of adhesion complexes are important parameters for the emergence of coordinated activity throughout the tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser-assisted cold spray (LCS) is a new coating and fabrication process which combines some advantages of CS: solid-state deposition, retain their initial composition and high build rate with the ability to deposit materials which are either difficult or impossible to deposit using cold spray alone. Stellite 6 powder is deposited on medium carbon steels by LCS using N 2 as carrier gas pressure. The topography, cross section thickness, structure of the coatings is examined by SEM, optical microscopy, EDX. The results show that thickness and fluctuation of coating are improved with increased deposition site temperature. Porosity of coating is affected by N 2 and deposition site temperature. In this paper, it presents optimal coating using N 2 at a pressure of 3 MPa and temperature of 450°C and deposition site temperature of 1100°C.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology for the deposition of titanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating, known as Supersonic Laser Deposition (SLD). Metallic deposits are obtained under appropriate impact conditions without the need for exceeding the melting point of the deposited material or substrate leading to improved coating quality. Details of the experimental approach are presented along with the general characteristics of the titanium coating produced using this novel coatings method. © 2011 Elsevier B.V. All rights reserved.