4 resultados para physical self-perceptions

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ±0.4, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ2 /3 law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions. © 2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modular self-reconfigurable robots have previously demonstrated that automatic control of their own body shapes enriches their behavioural functions. However, having predefined rigid modules technically limits real-world systems from being hyper-redundant and compliant. Encouraged by recent progress using elastically deformable material for robots, we propose the concept of soft self-reconfigurable robots which may become hyper-flexible during interaction with the environment. As the first attempt towards this goal, the paper proposes a novel approach using viscoelastic material Hot-Melt Adhesives (HMAs): for physical connection and disconnection control between bodies that are not necessarily predefined rigid modules. We present a model that characterizes the temperature dependency of the strength of HMA bonds, which is then validated and used in a feedback controller for automatic connection and disconnection. Using a minimalistic robot platform that is equipped with two devices handling HMAs, the performance of this method is evaluated in a pick-and-place experiment with aluminium and wooden parts. © 2012 IEEE.