18 resultados para physical control

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Physical connection and disconnection control has practical meanings for robot applications. Compared to conventional connection mechanisms, bonding involving a thermal process could provide high connection strength, high repeatability, and power-free connection maintenance, etc. In terms of disconnection, an established bond can be easily weakened with a temperature rise of the material used to form the bond. Hot melt adhesives (HMAs) are such material that can form adhesive bonds with any solid surfaces through a thermally induced solidification process. This paper proposes a novel control method for automatic connection and disconnection based on HMAs. More specifically, mathematical models are first established to describe the flowing behavior of HMAs at higher temperatures, as well as the temperature-dependent strength of an established HMA bond. These models are then validated with a specific type of HMA in a minimalistic robot setup equipped with two mechatronic devices for automated material handling. The validated models are eventually used for determining open parameters in a feedback controller for the robot to perform a pick-and-place task. Through a series of trials with different wooden and aluminum parts, we evaluate the performance of the automatic connection and disconnection methods in terms of speed, energy consumption, and robustness. © 1996-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The manufacturing industry is currently facing unprecedented challenges from changes and disturbances. The sources of these changes and disturbances are of different scope and magnitude. They can be of a commercial nature, or linked to fast product development and design, or purely operational (e.g. rush order, machine breakdown, material shortage etc.). In order to meet these requirements it is increasingly important that a production operation be flexible and is able to adapt to new and more suitable ways of operating. This paper focuses on a new strategy for enabling manufacturing control systems to adapt to changing conditions both in terms of product variation and production system upgrades. The approach proposed is based on two key concepts: (1) An autonomous and distributed approach to manufacturing control based on multi-agent methods in which so called operational agents represent the key physical and logical elements in the production environment to be controlled - for example, products and machines and the control strategies that drive them and (2) An adaptation mechanism based around the evolutionary concept of replicator dynamics which updates the behaviour of newly formed operational agents based on historical performance records in order to be better suited to the production environment. An application of this approach for route selection of similar products in manufacturing flow shops is developed and is illustrated in this paper using an example based on the control of an automobile paint shop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active control has been shown as a feasible technology for suppressing thermoacoustic instability in continuous combustion systems, and the control strategy design is substantially dependent on the reliability of the flame model. In this paper, refinement of G-equation flame model for the dynamics of lean premixed combustion is investigated. Precisely, the dynamics between the flame speed S_u and equivalence ratio phi are proposed based on numerical calculations and physical explanations. Finally, the developed model is tested on one set of experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model predictive control allows systematic handling of physical and operational constraints through the use of constrained optimisation. It has also been shown to successfully exploit plant redundancy to maintain a level of control in scenarios when faults are present. Unfortunately, the computational complexity of each individual iteration of the algorithm to solve the optimisation problem scales cubically with the number of plant inputs, so the computational demands are high for large MIMO plants. Multiplexed MPC only calculates changes in a subset of the plant inputs at each sampling instant, thus reducing the complexity of the optimisation. This paper demonstrates the application of multiplexed model predictive control to a large transport airliner in a nominal and a contingency scenario. The performance is compared to that obtained with a conventional synchronous model predictive controller, designed using an equivalent cost function. © 2012 AACC American Automatic Control Council).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unique response of ferroic materials to external excitations facilitates them for diverse technologies, such as nonvolatile memory devices. The primary driving force behind this response is encoded in domain switching. In bulk ferroics, domains switch in a two-step process: nucleation and growth. For ferroelectrics, this can be explained by the Kolmogorov-Avrami-Ishibashi (KAI) model. Nevertheless, it is unclear whether domains remain correlated in finite geometries, as required by the KAI model. Moreover, although ferroelastic domains exist in many ferroelectrics, experimental limitations have hindered the study of their switching mechanisms. This uncertainty limits our understanding of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from reaching their full technological potential. Here we used piezoresponse force microscopy to study the switching mechanisms of ferroelectric-ferroelastic domains in thin polycrystalline Pb 0.7Zr0.3TiO3 films at the nanometer scale. We have found that switched biferroic domains can nucleate at multiple sites with a coherence length that may span several grains, and that nucleators merge to form mesoscale domains, in a manner consistent with that expected from the KAI model. © 2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the development of miniature McKibben actuators. Due to their compliancy, high actuation force, and precision, these actuators are on the one hand interesting for medical applications such as prostheses and instruments for surgery and on the other hand for industrial applications such as for assembly robots. During this research, pneumatic McKibben actuators have been miniaturized to an outside diameter of 1.5 mm and a length ranging from 22 mm to 62 mm. These actuators are able to achieve forces of 6 N and strains up to about 15% at a supply pressure of 1 MPa. The maximal actuation speed of the actuators measured during this research is more than 350 mm/s. Further, positioning experiments with a laser interferometer and a PI controller revealed that these actuators are able to achieve sub-micron positioning resolution. © 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the intelligence and the functionality of microrobots increase, there is a growing need to incorporate sensors into these robots. In order to limit the outer dimensions of these microsystems, this research investigates sensors that can be integrated efficiently into microactuators. Here, a pneumatic piston-cylinder microactuator with an integrated inductive position sensor was developed. The main advantage of pneumatic actuators is their high force and power density at microscale. The outside diameter of the actuator is 1.3 mm and the length is 15 mm. The stroke of the actuator is 12 mm, and the actuation force is 1 N at a supply pressure of 1.5 MPa. The position sensor consists of two coils wound around the cylinder of the actuator. The measurement principle is based on the change in coupling factor between the coils as the piston moves in the actuator. The sensor is extremely small since one layer of 25 μm copper wire is sufficient to achieve an accuracy of 10 μm over the total stroke. Position tests with a PI controller and a sliding mode controller showed that the actuator is able to position with an accuracy up to 30 μm. Such positioning systems offer great opportunities for all devices that need to control a large number of degrees of freedom in a restricted volume. © 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operation of induction machines in the high-speed and/or high-torque range requires field-weakening to comply with voltage and current physical limitations. This paper presents an anti-windup approach to this problem: rather than developing an ad-hoc field weakening strategy in the high-speed region, we equip an unconstrained vector-control design with an anti-windup module that automatically adjusts the current and flux set-points so that voltage and current constraints are satisfied at every operating point. The anti-windup module includes a feedforward modification of the set point aimed at maximizing the available torque in steady-state and a feedback modification of the controller based on an internal model-based antiwindup scheme. This paper includes a complete stability analysis of the proposed solution and presents encouraging experimental results on an industrial drive. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several feedback control laws have appeared in the literature concerning the stabilization of the nonlinear Moore-Greitzer axial compression model. Motivated by magnitude and rate limitations imposed by the physical implementation of the control law, Larsen et al. studied a dynamic implementation of the S-controller suggested by Sepulchre and Kokotović. They showed the potential benefit of implementing the S-controller through a first-order lag: while the location of the closed-loop equilibrium achieved with the static control law was sensitive to poorly known parameters, the dynamic implementation resulted in a small limit cycle at a very desirable location, insensitive to parameter variations. In this paper, we investigate the more general case when the control is applied with a time delay. This can be seen as an extension of the model with a first-order lag. The delay can either be a result of system constraints or be deliberately implemented to achieve better system behavior. The resulting closed-loop system is a set of parameter-dependent delay differential equations. Numerical bifurcation analysis is used to study this model and investigate whether the positive results obtained for the first-order model persist, even for larger values of the delay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1-D engine simulation models are widely used for the analysis and verification of air-path design concepts and prediction of the resulting engine transient response. The latter often requires closed loop control over the model to ensure operation within physical limits and tracking of reference signals. For this purpose, a particular implementation of Model Predictive Control (MPC) based on a corresponding Mean Value Engine Model (MVEM) is reported here. The MVEM is linearised on-line at each operating point to allow for the formulation of quadratic programming (QP) problems, which are solved as the part of the proposed MPC algorithm. The MPC output is used to control a 1-D engine model. The closed loop performance of such a system is benchmarked against the solution of a related optimal control problem (OCP). As an example this study is focused on the transient response of a light-duty car Diesel engine. For the cases examined the proposed controller implementation gives a more systematic procedure than other ad-hoc approaches that require considerable tuning effort. © 2012 IFAC.