3 resultados para phase diffusion

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The redistribution of fluorine during solid phase epitaxial regrowth (SPER) of preamorphized Si has been experimentally investigated, explained, and simulated, for different F concentrations and temperatures. We demonstrate, by a detailed analysis and modeling of F secondary ion mass spectrometry chemical-concentration profiles, that F segregates in amorphous Si during SPER by splitting in three possible states: (i) a diffusive one that migrates in amorphous Si; (ii) an interface segregated state evidenced by the presence of a F accumulation peak at the amorphous-crystal interface; (iii) a clustered F state. The interplay among these states and their roles in the F incorporation into crystalline Si are fully described. It is shown that diffusive F migrates by a trap limited diffusion mechanism and also interacts with the advancing interface by a sticking-release dynamics that regulates the amount of F segregated at the interface. We demonstrate that this last quantity determines the regrowth rate through an exponential law. On the other hand we show that neither the diffusive F nor the one segregated at the interface can directly incorporate into the crystal but F has to cluster in the amorphous phase before being incorporated in the crystal, in agreement with recent experimental observations. The trends of the model parameters as a function of the temperature are shown and discussed obtaining a clear energetic scheme of the F redistribution and incorporation in preamorphized Si. The above physical understanding and the model could have a strong impact on the use of F as a tool for optimizing the doping profiles in the fabrication of ultrashallow junctions. © 2010 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites of magnetoresistive La 0.7Ca 0.3MnO 3 (LCMO) with insulating Mn 3O 4 are useful as a model system because no foreign cation is introduced in the LCMO phase by interdiffusion during the heat treatment. Here we report the magnetotransport properties as a function of sintering temperature T sinter for a fixed LCMO/Mn 3O 4 ratio. Decreasing T sinter from 1250 °C to 800 °C causes an increase in low field magnetoresistance (LFMR) that correlates with the decrease in crystallite size (CS) of the LCMO phase. When plotting LFMR at (77 K, 0.5 T) versus 1/CS, we find that the data for the LCMO/Mn 3O 4 composites sintered between 800 °C and 1250 °C follow the same trend line as data from the literature for pure LCMO samples with crystallite size >∼25 nm. This differs from the LFMR enhancement observed by many authors in the usual manganite composites, i.e., composites where the insulating phase contains cations other than La, Ca or Mn. This difference suggests that diffusion of foreign cations into the grain boundary region is a necessary ingredient for the enhanced LFMR. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight equations of state (EOS) have been evaluated for the simulation of compressible liquid water properties, based on empirical correlations, the principle of corresponding states and thermodynamic relations. The IAPWS-IF97 EOS for water was employed as the reference case. These EOSs were coupled to a modified AUSM+-up convective flux solver to determine flow profiles for three test cases of differing flow conditions. The impact of the non-viscous interaction term discretisation scheme, interfacial pressure method and selection of low-Mach number diffusion were also compared. It was shown that a consistent discretisation scheme using the AUSM+-up solver for both the convective flux and the non-viscous interfacial term demonstrated both robustness and accuracy whilst facilitating a computationally cheaper solution than discretisation of the interfacial term independently by a central scheme. The simple empirical correlations gave excellent results in comparison to the reference IAPWS-IF97 EOS and were recommended for developmental work involving water as a cheaper and more accurate EOS than the more commonly used stiffened-gas model. The correlations based on the principles of corresponding-states and the modified Peng-Robinson cubic EOS also demonstrated a high degree of accuracy, which is promising for future work with generic fluids. Further work will encompass extension of the solver to multiple dimensions and to account for other source terms such as surface tension, along with the incorporation of phase changes. © 2013.