39 resultados para perturbation

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly of proteins and peptides into polymeric amyloid fibrils is a process that has important implications ranging from the understanding of protein misfolding disorders to the discovery of novel nanobiomaterials. In this study, we probe the stability of fibrils prepared at pH 2.0 and composed of the protein insulin by manipulating electrostatic interactions within the fibril architecture. We demonstrate that strong electrostatic repulsion is sufficient to disrupt the hydrogen-bonded, cross-β network that links insulin molecules and ultimately results in fibril dissociation. The extent of this dissociation correlates well with predictions for colloidal models considering the net global charge of the polypeptide chain, although the kinetics of the process is regulated by the charge state of a single amino acid. We found the fibrils to be maximally stable under their formation conditions. Partial disruption of the cross-β network under conditions where the fibrils remain intact leads to a reduction in their stability. Together, these results support the contention that a major determinant of amyloid stability stems from the interactions in the structured core, and show how the control of electrostatic interactions can be used to characterize the factors that modulate fibril stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of bounded input perturbations on the stability of nonlinear globally asymptotically stable delay differential equations is analyzed. We investigate under which conditions global stability is preserved and if not, whether semi-global stabilization is possible by controlling the size or shape of the perturbation. These results are used to study the stabilization of partially linear cascade systems with partial state feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a premixed flame is placed within a duct, acoustic waves induce velocity perturbations at the flame's base. These travel down the flame, distorting its surface and modulating its heat release. This can induce self-sustained thermoacoustic oscillations. Although the phase speed of these perturbations is often assumed to equal the mean flow speed, experiments conducted in other studies and Direct Numerical Simulation (DNS) conducted in this study show that it varies with the acoustic frequency. In this paper, we examine how these variations affect the nonlinear thermoacoustic behaviour. We model the heat release with a nonlinear kinematic G-equation, in which the velocity perturbation is modelled on DNS results. The acoustics are governed by linearised momentum and energy equations. We calculate the flame describing function (FDF) using harmonic forcing at several frequencies and amplitudes. Then we calculate thermoacoustic limit cycles and explain their existence and stability by examining the amplitude-dependence of the gain and phase of the FDF. We find that, when the phase speed equals the mean flow speed, the system has only one stable state. When the phase speed does not equal the mean flow speed, however, the system supports multiple limit cycles because the phase of the FDF changes significantly with oscillation amplitude. This shows that the phase speed of velocity perturbations has a strong influence on the nonlinear thermoacoustic behaviour of ducted premixed flames. © 2013 The Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimization of a near-circular low-Earth-orbit multispacecraft refueling problem is studied. The refueling sequence, service time, and orbital transfer time are used as design variables, whereas the mean mission completion time and mean propellant consumed by orbital maneuvers are used as design objectives. The J2 term of the Earth's nonspherical gravity perturbation and the constraints of rendezvous time windows are taken into account. A hybridencoding genetic algorithm, which uses normal fitness assignment to find the minimum mean propellant-cost solution and fitness assignment based on the concept of Pareto-optimality to find multi-objective optimal solutions, is presented. The proposed approach is demonstrated for a typical multispacecraft refueling problem. The results show that the proposed approach is effective, and that the J2 perturbation and the time-window constraints have considerable influences on the optimization results. For the problems in which the J2 perturbation is not accounted for, the optimal refueling order can be simply determined as a sequential order or as the order only based on orbitalplane differences. In contrast, for the problems that do consider the J2 perturbation, the optimal solutions obtained have a variety of refueling orders and use the drift of nodes effectively to reduce the propellant cost for eliminating orbital-plane differences. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding combustion instabilities requires accurate measurements of the acoustic velocity perturbation into injectors. This is often accomplished via the use of the two microphone technique, as this only requires two pressure transducers. However, measurements of the actual velocities emerging from the injectors are not often taken, leaving questions regarding the assumptions about the acoustic velocity. A comparison of velocity measured at downstream of the injector with that of two-microphone technique can show the accuracy and limitations of two-microphone technique. In this paper, velocity measurements are taken using both particle image velocimetry (PIV) and the two-microphone technique in a high pressure facility designed for aeroengine injector measurements. The flow is excited using an area modulation device installed on the choked end of the combustion chamber, with PIV measurements enabled by optical access downstream of the injector through a quartz tube and windows. Acoustic velocity perturbations at the injector are determined by considering the Fourier transformed pressure fluctuations for two microphones installed at a known distance upstream of the injector. PIV measurements are realized by seeding the air flow with micrometric water particles under 2.5 bar pressure at ambient temperature. Phase locked velocity fields are realized by synchronizing the acquisition of PIV images with the revolution of the acoustic modulator using the pressure signal measured at the face of injector. The mean velocity fluctuation is calculated as the difference between maximum and minimum velocities, normalized by the mean velocity of the unforced case. Those values are compared with the peak-to-peak velocity fluctuation amplitude calculated by the two-microphone technique. Although the ranges of velocity fluctuations for both techniques are similar, the variation of fluctuation with forcing frequencies diverges significantly with frequency. The differences can be attributed to several limitations associated with of both techniques, such as the quality of the signal, the signal/noise ratio, the accuracy of PIV measurements and the assumption of isentropic flow of the particle velocity from the plenum through the injector. We conclude that two-microphone methods can be used as a reference value for the velocity fluctuation in low order applications such as flame transfer functions, but not for drawing conclusions regarding the absolute velocity fluctuations in the injector. Copyright © 2013 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this experimental and numerical study, two types of round jet are examined under acoustic forcing. The first is a non-reacting low density jet (density ratio 0.14). The second is a buoyant jet diffusion flame at a Reynolds number of 1100 (density ratio of unburnt fluids 0.5). Both jets have regions of strong absolute instability at their base and this causes them to exhibit strong self-excited bulging oscillations at welldefined natural frequencies. This study particularly focuses on the heat release of the jet diffusion flame, which oscillates at the same natural frequency as the bulging mode, due to the absolutely unstable shear layer just outside the flame. The jets are forced at several amplitudes around their natural frequencies. In the non-reacting jet, the frequency of the bulging oscillation locks into the forcing frequency relatively easily. In the jet diffusion flame, however, very large forcing amplitudes are required to make the heat release lock into the forcing frequency. Even at these high forcing amplitudes, the natural mode takes over again from the forced mode in the downstream region of the flow, where the perturbation is beginning to saturate non-linearly and where the heat release is high. This raises the possibility that, in a flame with large regions of absolute instability, the strong natural mode could saturate before the forced mode, weakening the coupling between heat release and incident pressure perturbations, hence weakening the feedback loop that causes combustion instability. © 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use vibration localization as a sensitive means of detecting small perturbations in stiffness in a pair of weakly coupled micromechanical resonators. For the first time, the variation in the eigenstates is studied by electrostatically coupling nearly identical resonators to allow for stronger localization of vibrational energy due to perturbations in stiffness. Eigenstate variations that are orders of magnitude greater than corresponding shifts in resonant frequency for an induced stiffness perturbation are experimentally demonstrated. Such high, voltagetunable parametric sensitivities together with the added advantage of intrinsic common mode rejection pave the way to a new paradigm of mechanical sensing. ©2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combustion oscillations are the phenomena which we may meet in developing the clean, safe and efficient power and propulsion systems. This paper summarizes authors' systematic work on fuel spray combustion oscillations in the recent years. Combining CFD calculations and stability analysis, a new approach of predicting combustion stabilities was developed. With this approach, detailed flow information and unstable modes can be obtained by CFD and solving perturbation equations, respectively. The results provide the guidance on understanding combustion instability mechanisms and developing the control strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhythmic and discrete arm movements occur ubiquitously in everyday life, and there is a debate as to whether these two classes of movements arise from the same or different underlying neural mechanisms. Here we examine interference in a motor-learning paradigm to test whether rhythmic and discrete movements employ at least partially separate neural representations. Subjects were required to make circular movements of their right hand while they were exposed to a velocity-dependent force field that perturbed the circularity of the movement path. The direction of the force-field perturbation reversed at the end of each block of 20 revolutions. When subjects made only rhythmic or only discrete circular movements, interference was observed when switching between the two opposing force fields. However, when subjects alternated between blocks of rhythmic and discrete movements, such that each was uniquely associated with one of the perturbation directions, interference was significantly reduced. Only in this case did subjects learn to corepresent the two opposing perturbations, suggesting that different neural resources were employed for the two movement types. Our results provide further evidence that rhythmic and discrete movements employ at least partially separate control mechanisms in the motor system.